期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
采用机器学习与二维伽马函数的股票指数量化交易策略
被引量:
4
1
作者
柴昱白
陈伟
+1 位作者
赵舒欣
毛新越
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2023年第5期204-212,共9页
为了通过短线交易获取对标股票指数的超额收益,提出一种基于机器学习的股票指数增强型量化交易策略,并实现程序化自动交易。首先生成股票指数的初始特征集,通过最大互信息系数法筛选得21维特征;然后设计双阈值涨跌不平衡标签与3种预测...
为了通过短线交易获取对标股票指数的超额收益,提出一种基于机器学习的股票指数增强型量化交易策略,并实现程序化自动交易。首先生成股票指数的初始特征集,通过最大互信息系数法筛选得21维特征;然后设计双阈值涨跌不平衡标签与3种预测分类方式(T、B-B、B-T),组合构建不同机器学习模型,并对比择优得到多空交易方向的最优机器学习模型分别为LSTM-B-T模型与RF-B-T模型;接着设计基于日内涨跌幅的二维伽马函数;最后使用经二维伽马函数计算得到的类概率判别阈值与最优机器学习模型预测的类概率进行涨跌类别判定,得到交易信号。将该策略应用于中证500指数的股指ETF进行回测与模拟盘交易验证,实验结果表明:相较于随机建仓策略,采用该策略使交易评价指标得到整体性提升;在回测与为期3个月的模拟盘交易验证中使用该策略均能获得对标指数的理想超额收益,分别为11.24%、11.08%。
展开更多
关键词
股票指数
指数增强
量化交易
程序化自动交易
二维伽马函数
机器学习
在线阅读
下载PDF
职称材料
题名
采用机器学习与二维伽马函数的股票指数量化交易策略
被引量:
4
1
作者
柴昱白
陈伟
赵舒欣
毛新越
机构
西安交通大学电子与信息学部
出处
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2023年第5期204-212,共9页
基金
陕西省重点研发计划资助项目(2018ZDCXL-GY-04-07)。
文摘
为了通过短线交易获取对标股票指数的超额收益,提出一种基于机器学习的股票指数增强型量化交易策略,并实现程序化自动交易。首先生成股票指数的初始特征集,通过最大互信息系数法筛选得21维特征;然后设计双阈值涨跌不平衡标签与3种预测分类方式(T、B-B、B-T),组合构建不同机器学习模型,并对比择优得到多空交易方向的最优机器学习模型分别为LSTM-B-T模型与RF-B-T模型;接着设计基于日内涨跌幅的二维伽马函数;最后使用经二维伽马函数计算得到的类概率判别阈值与最优机器学习模型预测的类概率进行涨跌类别判定,得到交易信号。将该策略应用于中证500指数的股指ETF进行回测与模拟盘交易验证,实验结果表明:相较于随机建仓策略,采用该策略使交易评价指标得到整体性提升;在回测与为期3个月的模拟盘交易验证中使用该策略均能获得对标指数的理想超额收益,分别为11.24%、11.08%。
关键词
股票指数
指数增强
量化交易
程序化自动交易
二维伽马函数
机器学习
Keywords
stock index
exponential augmentation
quantitative trading
programmatic trading
2d gamma function
machine learning
分类号
F832.51 [经济管理—金融学]
TP181 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
采用机器学习与二维伽马函数的股票指数量化交易策略
柴昱白
陈伟
赵舒欣
毛新越
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2023
4
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部