采用湿喷丸技术处理铝合金表面,研究喷丸强度对2219铝合金扩散连接的影响。结果表明:随着喷丸强度的提高,表面粗糙度由0.1 mm N的1.917μm增加到0.3 mm N的3.401μm,且过大的喷丸强度易导致表面出现轻微的剥落损伤现象;喷丸强化提供的...采用湿喷丸技术处理铝合金表面,研究喷丸强度对2219铝合金扩散连接的影响。结果表明:随着喷丸强度的提高,表面粗糙度由0.1 mm N的1.917μm增加到0.3 mm N的3.401μm,且过大的喷丸强度易导致表面出现轻微的剥落损伤现象;喷丸强化提供的残余应力场可以促进界面的扩散连接过程,一方面加速溶质原子扩散并在界面聚集成相且与氧化物产生交互作用;另一方面促进再结晶晶粒形成,利用新晶界的动态迁移过程消除原始界面,两者共同作用提升了界面的愈合效果,0.1 mm N时界面剪切强度可由无喷丸的12.6 MPa提升至41.1 MPa。展开更多
通过平面应变压缩试验获得2219铝合金在变形温度320~480℃、应变速率0.1~10 s^(-1)、最大真应变1.2条件下的压缩变形行为;基于试验得到的真应力-真应变数据和Arrhenius双曲正弦模型,分别建立峰值应力本构方程和应变补偿本构方程,获得合...通过平面应变压缩试验获得2219铝合金在变形温度320~480℃、应变速率0.1~10 s^(-1)、最大真应变1.2条件下的压缩变形行为;基于试验得到的真应力-真应变数据和Arrhenius双曲正弦模型,分别建立峰值应力本构方程和应变补偿本构方程,获得合金的热变形激活能和应力指数,分析合金的变形机制。结果表明:在平面应变压缩过程中,合金的流变应力先迅速升高,达到峰值应力后稍有下降,最后趋于稳定;流变应力随变形温度的升高或应变速率的降低而降低。峰值应力本构方程预测的真应力与试验值的最大相对误差为4.57%;应变补偿的本构方程预测得到的真应力与试验值的平均绝对相对误差为2.62%,线性相关系数为0.9953。建立的本构方程都能够准确预测2219铝合金在平面应变压缩变形过程中的流变应力。在整个变形过程中热变形激活能范围为135.138~145.410 k J·mol^(-1),应力指数范围为5.920~6.930,表明变形时合金主要的扩散机制为晶格扩散,主要的变形机制为位错攀移。展开更多
文摘采用湿喷丸技术处理铝合金表面,研究喷丸强度对2219铝合金扩散连接的影响。结果表明:随着喷丸强度的提高,表面粗糙度由0.1 mm N的1.917μm增加到0.3 mm N的3.401μm,且过大的喷丸强度易导致表面出现轻微的剥落损伤现象;喷丸强化提供的残余应力场可以促进界面的扩散连接过程,一方面加速溶质原子扩散并在界面聚集成相且与氧化物产生交互作用;另一方面促进再结晶晶粒形成,利用新晶界的动态迁移过程消除原始界面,两者共同作用提升了界面的愈合效果,0.1 mm N时界面剪切强度可由无喷丸的12.6 MPa提升至41.1 MPa。
文摘通过平面应变压缩试验获得2219铝合金在变形温度320~480℃、应变速率0.1~10 s^(-1)、最大真应变1.2条件下的压缩变形行为;基于试验得到的真应力-真应变数据和Arrhenius双曲正弦模型,分别建立峰值应力本构方程和应变补偿本构方程,获得合金的热变形激活能和应力指数,分析合金的变形机制。结果表明:在平面应变压缩过程中,合金的流变应力先迅速升高,达到峰值应力后稍有下降,最后趋于稳定;流变应力随变形温度的升高或应变速率的降低而降低。峰值应力本构方程预测的真应力与试验值的最大相对误差为4.57%;应变补偿的本构方程预测得到的真应力与试验值的平均绝对相对误差为2.62%,线性相关系数为0.9953。建立的本构方程都能够准确预测2219铝合金在平面应变压缩变形过程中的流变应力。在整个变形过程中热变形激活能范围为135.138~145.410 k J·mol^(-1),应力指数范围为5.920~6.930,表明变形时合金主要的扩散机制为晶格扩散,主要的变形机制为位错攀移。