CO_(2)管道输送作为碳捕集、利用和封存(carbon capture,utilization and storage,CCUS)技术中的连接碳源和碳汇的关键环节,未来将在实现碳中和过程中发挥重要作用。对于管道水击工况,其产生的压力震荡可能超过管内承压和低于泵的进站...CO_(2)管道输送作为碳捕集、利用和封存(carbon capture,utilization and storage,CCUS)技术中的连接碳源和碳汇的关键环节,未来将在实现碳中和过程中发挥重要作用。对于管道水击工况,其产生的压力震荡可能超过管内承压和低于泵的进站压力。目前,超临界CO_(2)管道水击及控制理论还不成熟。建立以质量、动量和能量守恒定律为基础的描述管道内一维气体流动的数学模型,采用特征线法进行求解,利用MATLAB编程计算,分别与Kiuchi提出的输气系统模型的模拟结果和商业软件OLGA模拟的结果进行对比分析。结果表明:与输气系统模型的模拟结果大体一致,与OLGA软件计算压力和流量的最大相对误差分别为0.02%和2.32%,满足工程计算精度的要求。对于管道压缩机启停、阀门紧急开关和流量急剧变化等在较短时间内引起管道参数变化的快瞬变过程,通过设置急剧变化值进行模拟,所建立的模型能够计算出各个节点的参数变化情况且精度较高,可为超临界CO_(2)管道输送工艺仿真软件国产化提供理论支持与技术支持。展开更多
Accurate 3-D fracture network model for rock mass in dam foundation is of vital importance for stability,grouting and seepage analysis of dam foundation.With the aim of reducing deviation between fracture network mode...Accurate 3-D fracture network model for rock mass in dam foundation is of vital importance for stability,grouting and seepage analysis of dam foundation.With the aim of reducing deviation between fracture network model and measured data,a 3-D fracture network dynamic modeling method based on error analysis was proposed.Firstly,errors of four fracture volume density estimation methods(proposed by ODA,KULATILAKE,MAULDON,and SONG)and that of four fracture size estimation methods(proposed by EINSTEIN,SONG and TONON)were respectively compared,and the optimal methods were determined.Additionally,error index representing the deviation between fracture network model and measured data was established with integrated use of fractal dimension and relative absolute error(RAE).On this basis,the downhill simplex method was used to build the dynamic modeling method,which takes the minimum of error index as objective function and dynamically adjusts the fracture density and size parameters to correct the error index.Finally,the 3-D fracture network model could be obtained which meets the requirements.The proposed method was applied for 3-D fractures simulation in Miao Wei hydropower project in China for feasibility verification and the error index reduced from 2.618 to 0.337.展开更多
文摘CO_(2)管道输送作为碳捕集、利用和封存(carbon capture,utilization and storage,CCUS)技术中的连接碳源和碳汇的关键环节,未来将在实现碳中和过程中发挥重要作用。对于管道水击工况,其产生的压力震荡可能超过管内承压和低于泵的进站压力。目前,超临界CO_(2)管道水击及控制理论还不成熟。建立以质量、动量和能量守恒定律为基础的描述管道内一维气体流动的数学模型,采用特征线法进行求解,利用MATLAB编程计算,分别与Kiuchi提出的输气系统模型的模拟结果和商业软件OLGA模拟的结果进行对比分析。结果表明:与输气系统模型的模拟结果大体一致,与OLGA软件计算压力和流量的最大相对误差分别为0.02%和2.32%,满足工程计算精度的要求。对于管道压缩机启停、阀门紧急开关和流量急剧变化等在较短时间内引起管道参数变化的快瞬变过程,通过设置急剧变化值进行模拟,所建立的模型能够计算出各个节点的参数变化情况且精度较高,可为超临界CO_(2)管道输送工艺仿真软件国产化提供理论支持与技术支持。
基金Project(51321065)supported by the Innovative Research Groups of the National Natural Science Foundation of ChinaProject(2013CB035904)supported by the National Basic Research Program of China(973 Program)Project(51439005)supported by the National Natural Science Foundation of China
文摘Accurate 3-D fracture network model for rock mass in dam foundation is of vital importance for stability,grouting and seepage analysis of dam foundation.With the aim of reducing deviation between fracture network model and measured data,a 3-D fracture network dynamic modeling method based on error analysis was proposed.Firstly,errors of four fracture volume density estimation methods(proposed by ODA,KULATILAKE,MAULDON,and SONG)and that of four fracture size estimation methods(proposed by EINSTEIN,SONG and TONON)were respectively compared,and the optimal methods were determined.Additionally,error index representing the deviation between fracture network model and measured data was established with integrated use of fractal dimension and relative absolute error(RAE).On this basis,the downhill simplex method was used to build the dynamic modeling method,which takes the minimum of error index as objective function and dynamically adjusts the fracture density and size parameters to correct the error index.Finally,the 3-D fracture network model could be obtained which meets the requirements.The proposed method was applied for 3-D fractures simulation in Miao Wei hydropower project in China for feasibility verification and the error index reduced from 2.618 to 0.337.