期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于L1-范数的二维线性判别分析 被引量:4
1
作者 陈思宝 陈道然 罗斌 《电子与信息学报》 EI CSCD 北大核心 2015年第6期1372-1377,共6页
为了避免图像数据向量化后的维数灾难问题,以及增强对野值(outliers)及噪声的鲁棒性,该文提出一种基于L1-范数的2维线性判别分析(L1-norm-based Two-Dimensional Linear Discriminant Analysis,2DLDA-L1)降维方法。它充分利用L1-范数对... 为了避免图像数据向量化后的维数灾难问题,以及增强对野值(outliers)及噪声的鲁棒性,该文提出一种基于L1-范数的2维线性判别分析(L1-norm-based Two-Dimensional Linear Discriminant Analysis,2DLDA-L1)降维方法。它充分利用L1-范数对野值及噪声的强鲁棒性,并且直接在图像矩阵上进行投影降维。该文还提出一种快速迭代优化算法,并给出了其单调收敛到局部最优的证明。在多个图像数据库上的实验验证了该方法的鲁棒性与高效性。 展开更多
关键词 图像处理 L1-范数 2维线性判别分析 线性投影
在线阅读 下载PDF
基于分块2DPCA与2DLDA的单训练样本人脸识别 被引量:3
2
作者 覃磊 李德华 周康 《微电子学与计算机》 CSCD 北大核心 2015年第11期105-110,共6页
二维线性判别分析(2DLDA)在人脸识别已经获得巨大成功,然而用于单训练样本人脸识别问题方法失效,因为每类需要多个样本计算类内散度.对此提出了一种新的基于图像矩阵的分块二维主成分分析+二维线性判别分析(Block 2DPCA+2DLDA)的单训练... 二维线性判别分析(2DLDA)在人脸识别已经获得巨大成功,然而用于单训练样本人脸识别问题方法失效,因为每类需要多个样本计算类内散度.对此提出了一种新的基于图像矩阵的分块二维主成分分析+二维线性判别分析(Block 2DPCA+2DLDA)的单训练样本人脸识别算法.首先将图像进行分块,并按其位置将子图像分成多个样本集,在每个样本集上应用2DPCA算法,进行第一次识别.其次将第一次识别出的已知类别的测试样本并入原单训练样本集中,原单训练样本集成为多训练样本集.最后在新的训练样本集和测试集上应用2DLDA算法作为第二次识别,识别第一次未能识别出的图像.Block 2DPCA+2DLDA算法在ORL人脸数据库上被检测,实验结果表明Block 2DPCA+2DLDA识别结果优于PCA、2DPCA等算法. 展开更多
关键词 单训练样本 人脸识别 主成分分析(2DPCA) 线性判别分析(2DLDA)
在线阅读 下载PDF
基于2DPCA-2DLDA的人脸识别算法
3
作者 华显明 陈勇 《重庆科技学院学报(自然科学版)》 CAS 2012年第5期143-145,共3页
提出一种2DPCA-2DLDA方法来对人脸进行识别。该方法同时运用基于行的2DPCA和基于列的2DLDA方法直接在2维图像上进行投影,避免了对大矩阵的计算,同时也充分提取了图像的有效信息,在ORL人脸库上的实验结果表明该方法较优于其他方法。
关键词 人脸识别 矩阵 2主成分分析 2维线性判别分析
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部