期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
融合相位一致性与二维主成分分析的视觉显著性预测 被引量:3
1
作者 徐威 唐振民 《电子与信息学报》 EI CSCD 北大核心 2015年第9期2089-2096,共8页
为了更加有效地预测图像中吸引视觉注意的关键区域,该文提出一种融合相位一致性与2维主成分分析(2DPCA)的显著性方法。该方法不同于传统的利用相位谱的方式,而是提出采用相位一致性(PC)获取图像中重要的特征点和边缘信息,经快速漂移超... 为了更加有效地预测图像中吸引视觉注意的关键区域,该文提出一种融合相位一致性与2维主成分分析(2DPCA)的显著性方法。该方法不同于传统的利用相位谱的方式,而是提出采用相位一致性(PC)获取图像中重要的特征点和边缘信息,经快速漂移超像素优化后,融合局部和全局颜色对比度,生成低层特征显著图。接着提出利用2DPCA提取图像块的主成分后,计算主成分空间中图像块的局部和全局可区分性,得到模式显著图。最后,通过空间离散度度量分配合适的权重,使两者融合,提取显著性区域。在两种人眼跟踪数据库上与5种经典算法的实验对比结果表明,该算法能更加准确地预测人眼视觉关注点。 展开更多
关键词 图像处理 视觉显著性 人眼关注点预测 相位一致性 2维主成分分析
在线阅读 下载PDF
双灵活度量自适应加权2DPCA在水下光学图像识别中的应用
2
作者 毕鹏飞 胡志远 +1 位作者 陈璇 杜雪 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第11期4188-4197,共10页
受观测条件和采集场景等因素影响,水下光学图像通常呈现出高维小样本特性且易伴随着噪声信息干扰,导致许多降维方法对其识别过程中的鲁棒表现力不足。为解决上述问题,该文提出一种新颖的双灵活度量自适应加权2维主成分分析方法(DFMAW-2D... 受观测条件和采集场景等因素影响,水下光学图像通常呈现出高维小样本特性且易伴随着噪声信息干扰,导致许多降维方法对其识别过程中的鲁棒表现力不足。为解决上述问题,该文提出一种新颖的双灵活度量自适应加权2维主成分分析方法(DFMAW-2DPCA)应用于水下图像识别。该方法不仅在建立重构误差和方差之间双层关系中同时使用了灵活的鲁棒距离度量机制,而且能够根据每个样本实际状态自适应学习到与之相匹配的权重,有效增强了模型在水下噪声干扰环境下的鲁棒性并实现识别精度的提升。与此同时,该文设计了一个快速非贪婪算法用于最优解的获取,其具有良好的收敛性。通过3个水下图像数据库中进行大量实验的结果表明,DFMAW-2DPCA在同类方法中具有更为杰出的整体性能。 展开更多
关键词 模式识别 鲁棒距离度量 自适应加权 水下光学图像 2维主成分分析
在线阅读 下载PDF
一种基于Gabor小波及互协方差降维运算的人脸识别方法 被引量:9
3
作者 李雅倩 张少伟 +2 位作者 李海滨 张文明 张强 《电子与信息学报》 EI CSCD 北大核心 2017年第8期2023-2027,共5页
针对传统的人脸识别方法对人脸图像的曝光量、表情比较敏感,并且具有较大类内离散度的缺点,该文提出一种基于Gabor小波以及加权互协方差运算的人脸识别算法。该算法首先对人脸图像提取Gabor特征,然后使用加权的互协方差矩阵对经过处理... 针对传统的人脸识别方法对人脸图像的曝光量、表情比较敏感,并且具有较大类内离散度的缺点,该文提出一种基于Gabor小波以及加权互协方差运算的人脸识别算法。该算法首先对人脸图像提取Gabor特征,然后使用加权的互协方差矩阵对经过处理的特征图像进行降维及特征提取;最后使用最近邻分类器进行分类。在ORL数据库和AR数据库上的实验表明,该方法的降维和识别性能优于传统2DPCA及其改进算法,能兼顾维度简约性和准确性,有效地提高了识别性能。 展开更多
关键词 人脸识别 GABOR小波 2维主成分分析 互协方差矩阵
在线阅读 下载PDF
基于2D-PCA特征描述的非负权重邻域嵌入人脸超分辨率重建算法 被引量:7
4
作者 曹明明 干宗良 +2 位作者 崔子冠 李然 朱秀昌 《电子与信息学报》 EI CSCD 北大核心 2015年第4期777-783,共7页
在基于邻域嵌入人脸图像的超分辨率重建算法中,训练和重建均在特征空间进行,因此,特征选择对算法性能具有较大影响。另外,算法模型对重建权重未加限定,导致负数权重出现而产生过拟合效应,使得重建人脸图像质量衰退。考虑到人脸图像的特... 在基于邻域嵌入人脸图像的超分辨率重建算法中,训练和重建均在特征空间进行,因此,特征选择对算法性能具有较大影响。另外,算法模型对重建权重未加限定,导致负数权重出现而产生过拟合效应,使得重建人脸图像质量衰退。考虑到人脸图像的特征选择以及权重符号限定的重要作用,该文提出一种基于2维主成分分析(2DPCA)特征描述的非负权重邻域嵌入人脸超分辨率重建算法。首先将人脸图像分成若干子块,利用K均值聚类获得图像子块的局部视觉基元,并利用得到的局部视觉基元对图像子块分类。然后,利用2D-PCA对每一类人脸图像子块提取特征,并建立高、低分辨率样本库。最后,在重建过程中使用新的非负权重求解方法求取权重。仿真实验结果表明,相比其他基于邻域嵌入人脸超分辨率重建方法,所提算法可有效提高权重的稳定性,减少过拟合效应,其重建人脸图像具有较好的主客观质量。 展开更多
关键词 图像处理 人脸超分辨率重建 邻域嵌入 局部视觉基元 2维主成分分析
在线阅读 下载PDF
一种基于加权变形的2DPCA的人脸特征提取方法 被引量:24
5
作者 曾岳 冯大政 《电子与信息学报》 EI CSCD 北大核心 2011年第4期769-774,共6页
该文首先分析了主成分分析法(PCA)和2维主成分分析法(2DPCA)的关系,针对2DPCA丢失具有鉴别能力的协方差信息以及PCA方法不能解决小样本的问题,提出了基于一种加权变形的2DPCA的人脸特征提取方法(WV2DPCA),该方法利用变形的2DPCA方法分... 该文首先分析了主成分分析法(PCA)和2维主成分分析法(2DPCA)的关系,针对2DPCA丢失具有鉴别能力的协方差信息以及PCA方法不能解决小样本的问题,提出了基于一种加权变形的2DPCA的人脸特征提取方法(WV2DPCA),该方法利用变形的2DPCA方法分别对人脸3个子部分分别提取特征,然后根据最近邻理论和权值进行分类。经过在ORL人脸库和YALE人脸库的实验研究表明:与2DPCA相比,提高了人脸空间的识别率,压缩了人脸空间的系数,减少了识别时间;在识别的准确率方面,更优于传统的Fisherfaces,IC,Kernel Eigenfaces的算法。 展开更多
关键词 人脸识别 人脸表示 成分分析法(PCA) 2维主成分分析法(2DPCA)
在线阅读 下载PDF
一种基于共同向量结合2DPCA的人脸识别方法 被引量:14
6
作者 文颖 施鹏飞 《自动化学报》 EI CSCD 北大核心 2009年第2期202-205,共4页
提出了一种基于共同向量结合2维主成分分析(2-dimen- sional principal component analysis,2DPCA)的人脸识别方法.共同向量由图像通过Gram-Schmidt正交变换而求得,具有该类图像共同不变的性质.原始图像与该类其同向量之间的差分向量通... 提出了一种基于共同向量结合2维主成分分析(2-dimen- sional principal component analysis,2DPCA)的人脸识别方法.共同向量由图像通过Gram-Schmidt正交变换而求得,具有该类图像共同不变的性质.原始图像与该类其同向量之间的差分向量通过2DPCA处理,依据最小距离测试得到识别结果.实验在ORL和Yale人脸数据库进行测试,结果表明本文提出的方法有较好的识别性能. 展开更多
关键词 人脸识别 共同向量 2维主成分分析
在线阅读 下载PDF
基于张量的2D-PCA人脸识别算法 被引量:7
7
作者 叶学义 王大安 +2 位作者 宦天枢 夏经文 顾亚风 《计算机工程与应用》 CSCD 北大核心 2017年第6期1-6,共6页
人脸图像的色彩信息也是人脸的重要特征,但现有的2D-PCA彩色人脸识别忽略了人脸色彩信息的空间关系。由此引入三阶张量表示,提出基于张量的2D-PCA(Tensor PCA)的人脸识别算法。Tensor PCA通过分解n模总体散布矩阵获得三个由最大特征值... 人脸图像的色彩信息也是人脸的重要特征,但现有的2D-PCA彩色人脸识别忽略了人脸色彩信息的空间关系。由此引入三阶张量表示,提出基于张量的2D-PCA(Tensor PCA)的人脸识别算法。Tensor PCA通过分解n模总体散布矩阵获得三个由最大特征值对应的特征向量组成的将张量样本投影到低维子空间的投影矩阵,并构造交替最小二乘法的迭代过程对矩阵进行优化得到最优投影矩阵,使得投影后的样本间的距离尽可能得大,以达到最佳分类识别的效果。Georgia Tech彩色人脸库的测试结果表明,与2D-PCA方法相比,识别正确率提升了5.53%,同时训练时间降低了78.1%。 展开更多
关键词 人脸识别 色彩信息 成分分析(2D-PCA) 张量
在线阅读 下载PDF
基于样本扩充和改进2DPCA的单样本人脸识别 被引量:8
8
作者 赵雅英 谭延琪 马小虎 《计算机应用》 CSCD 北大核心 2011年第10期2728-2730,2756,共4页
针对大多数人脸识别方法在单个训练样本条件下识别性能下降的问题,提出了结合多种样本扩充方法和改进二维主成分分析(2DPCA)的人脸识别算法。通过分析各种样本扩充方法的优缺点,用多种样本扩充方法来生成虚拟样本,以充分利用单一样本所... 针对大多数人脸识别方法在单个训练样本条件下识别性能下降的问题,提出了结合多种样本扩充方法和改进二维主成分分析(2DPCA)的人脸识别算法。通过分析各种样本扩充方法的优缺点,用多种样本扩充方法来生成虚拟样本,以充分利用单一样本所提供的信息。采用改进的2DPCA方法对生成的虚拟样本进行特征提取,对训练样本进行分块,并用类内平均值规范后的分块来构造总体散布矩阵。在ORL和Yale人脸库上的实验表明,所提出的方法在识别性能方面优于普通的2DPCA方法,优于单一的样本扩充方法。 展开更多
关键词 单样本 人脸识别 样本扩充 类内平均值 成分分析(2DPCA)
在线阅读 下载PDF
基于分块小波变换和2DPCA的人脸特征提取与识别算法 被引量:4
9
作者 王玉德 赵焕利 薛乃玉 《红外与激光工程》 EI CSCD 北大核心 2012年第11期3118-3122,共5页
从最优化的角度出发,提出了一种基于分块小波变换和二维主成分分析法(2DPCA)的人脸特征提取与识别算法。该方法首先对人脸图像进行分块小波变换,并对各分块的高、低频分量进行组合处理,然后对小波系数特征应用2DPCA方法进行变换并将分... 从最优化的角度出发,提出了一种基于分块小波变换和二维主成分分析法(2DPCA)的人脸特征提取与识别算法。该方法首先对人脸图像进行分块小波变换,并对各分块的高、低频分量进行组合处理,然后对小波系数特征应用2DPCA方法进行变换并将分块特征进行融合得到人脸鉴别特征,最后在ORL人脸库上应用支持向量机(SVM)对该特征进行分类识别。试验结果表明,该算法能有效地提高人脸识别性能,具有较短的识别时间和较高的识别准确率,优于传统的人脸识别方法。 展开更多
关键词 特征提取与识别 分块小波变换 成分分析(2DPCA) 支持向量机
在线阅读 下载PDF
二维类增广PCA及其在人脸识别中的应用 被引量:2
10
作者 徐毅 赵冬娟 梁久祯 《计算机工程与应用》 CSCD 2012年第1期202-204,共3页
提出了一种二维类增广PCA(2DCAPCA)的人脸识别算法。用二维PCA(2DPCA)方法直接对人脸图像矩阵进行特征提取,对提取的特征进行归一化处理,将归一化处理后的特征与类别信息结合构成类增广矩阵,对类增广矩阵进行2DPCA处理,提取图像的类增... 提出了一种二维类增广PCA(2DCAPCA)的人脸识别算法。用二维PCA(2DPCA)方法直接对人脸图像矩阵进行特征提取,对提取的特征进行归一化处理,将归一化处理后的特征与类别信息结合构成类增广矩阵,对类增广矩阵进行2DPCA处理,提取图像的类增广矩阵特征。由于该算法既保留了人脸图像的结构信息,又考虑了样本的类别信息,识别率有了较大的提高。通过Yale和FERET库上的实验表明,该方法对人脸识别是有效的。 展开更多
关键词 人脸识别 特征提取 成分分析(2DPCA) 类增广成分分析(CAPCA) 类增广成分分析(2DCAPCA)
在线阅读 下载PDF
一种结合2DLPP与2DPCA的人脸识别方法 被引量:8
11
作者 齐永锋 火元莲 《西南交通大学学报》 EI CSCD 北大核心 2011年第6期910-916,共7页
为解决二维局部保持投影(2DLPP)需要较多数据表示人脸特征的缺陷,提出了一种新的二维局部保持投影主成分分析方法(2DLPP-PCA).通过对人脸图像在行、列方向同时进行2DLPP和2DPCA投影,2DLPP-PCA不仅能减少保存人脸特征所需要的数据量,而... 为解决二维局部保持投影(2DLPP)需要较多数据表示人脸特征的缺陷,提出了一种新的二维局部保持投影主成分分析方法(2DLPP-PCA).通过对人脸图像在行、列方向同时进行2DLPP和2DPCA投影,2DLPP-PCA不仅能减少保存人脸特征所需要的数据量,而且能有效地提取人脸的局部特征和全局特征.在ORL、Yale和CAS-PEAL-R1人脸数据库上的实验结果表明,2DLPP-PCA是一种高性能的特征提取方法,当训练样本数为6时,2DLPP-PCA在ORL数据库上的最佳平均识别率达到99%以上. 展开更多
关键词 局部保持投影(2DLPP) 成分分析(2DPCA) 特征提取 人脸识别
在线阅读 下载PDF
随机采样的2DPCA人脸识别方法 被引量:2
12
作者 朱玉莲 彭星 《小型微型计算机系统》 CSCD 北大核心 2011年第12期2461-2465,共5页
在2DPCA的基础上提出一种随机采样的2DPCA人脸识别方法--RRS-2DPCA.同传统通过对特征或投影向量进行采样的方法不同的是,RRS-2DPCA(Row Random Sampling 2DPCA)将随机采样建立于图像的行向量集中,然后在行向量子集中执行2DPCA.在ORL、Y... 在2DPCA的基础上提出一种随机采样的2DPCA人脸识别方法--RRS-2DPCA.同传统通过对特征或投影向量进行采样的方法不同的是,RRS-2DPCA(Row Random Sampling 2DPCA)将随机采样建立于图像的行向量集中,然后在行向量子集中执行2DPCA.在ORL、Yale和AR人脸数据集上进行实验,结果表明RRS-2DPCA不仅具很好的识别性能和运算效率,而且对参数具有很大的稳定性.另外针对2DPCA和RRS-2DPCA对光线、遮挡等不鲁棒问题,进一步提出了局部区域随机采样的2DPCA方法LRRS-2DPCA(Local Row Random Sampling 2DPCA),将RRS-2DPCA执行在人脸图像的局部区域中.实验结果表明LRRS-2DPCA不仅具有较好的鲁棒性更大大的提高了RRS-2DPCA的识别性能. 展开更多
关键词 人脸识别 成分分析(2DPCA) 局部区域 随机采样
在线阅读 下载PDF
一种基于人脸垂直对称性的变形2DPCA算法 被引量:4
13
作者 曾岳 冯大政 《计算机工程与科学》 CSCD 北大核心 2011年第7期74-79,共6页
本文分析了人脸的对称性和主成分分析法(PCA)、二维主成分分析法(2DPCA)的特性,证明了2DPCA协方差矩阵就是PCA协方差矩阵的主角线的平均值,同时表明2DPCA减少了对人脸识别有用的协方差信息。提出了一种基于人脸垂直对称性的变形2DPCA算... 本文分析了人脸的对称性和主成分分析法(PCA)、二维主成分分析法(2DPCA)的特性,证明了2DPCA协方差矩阵就是PCA协方差矩阵的主角线的平均值,同时表明2DPCA减少了对人脸识别有用的协方差信息。提出了一种基于人脸垂直对称性的变形2DPCA算法(S2DPCA),该算法最大程度地利用了协方差鉴别信息,用更少的系数表示一张人脸图像。通过在ORL的实验比较表明,该算法与PCA算法相比降低了计算复杂性,与2DPCA方法和PCA方法相比提高了人脸识别率,在识别率方面优于传统算法(PCA(Eigenfaces)、ICA、Kernel Eigenfaces),同时也压缩了人脸的存储空间。 展开更多
关键词 成分分析法(PCA) 成分分析法(2DPCA) 人脸识别 人脸表示
在线阅读 下载PDF
一种基于半监督学习的2DPCA人脸识别方法 被引量:1
14
作者 李凯 徐治平 《河北大学学报(自然科学版)》 CAS 北大核心 2013年第4期413-419,共7页
结合半监督学习中的自学习技术以及二维主成分分析(two-dimensional principal component analysis-2DPCA)方法,提出了一种基于半监督学习的人脸识别方法.在二维主成分分析的基础上,利用少量具有类别标签的样本训练分类器,然后利用半监... 结合半监督学习中的自学习技术以及二维主成分分析(two-dimensional principal component analysis-2DPCA)方法,提出了一种基于半监督学习的人脸识别方法.在二维主成分分析的基础上,利用少量具有类别标签的样本训练分类器,然后利用半监督学习中的自学习技术,对未知类别标签的人脸样本进行分类,并将具有高置信度的人脸样本加入到训练集中,以此增加训练集中的人脸样本数量.在ORL人脸库和Yale人脸库的实验结果,表明了提出方法的有效性. 展开更多
关键词 人脸识别 半监督学习 成分分析法(2DPCA) 特征提取
在线阅读 下载PDF
M2DPCA与CCLDA相结合的人脸识别
15
作者 冯华丽 刘渊 《计算机工程与应用》 CSCD 2014年第12期129-132,143,共5页
CCLDA算法将图像矩阵转化为向量进行处理,该算法易造成数据维数很大,计算量复杂并容易出现"小样本"等问题。针对以上这些问题,提出了一种基于模块化2DPCA和CCLDA相结合的协同处理方法并应用于人脸识别领域。并且在ORL和XM2VT... CCLDA算法将图像矩阵转化为向量进行处理,该算法易造成数据维数很大,计算量复杂并容易出现"小样本"等问题。针对以上这些问题,提出了一种基于模块化2DPCA和CCLDA相结合的协同处理方法并应用于人脸识别领域。并且在ORL和XM2VTS人脸库上的实验结果表明,新方法在识别效果上有比以往的算法更为明显的优势。 展开更多
关键词 上下文约束 模块化二成分分析(M2DPCA) 基于上下文约束线性判别分析(CCLDA) 人脸识别
在线阅读 下载PDF
基于环形对称Gabor变换和2DPCA的人脸识别算法 被引量:6
16
作者 王娜 王汇源 《计算机工程与应用》 CSCD 北大核心 2015年第16期146-150,共5页
与传统Gabor小波变换相比,环形对称Gabor变换(CSGT)具有信息冗余度低和严格的旋转不变性的优点。提出了一种基于环形对称Gabor变换与2DPCA的人脸识别新算法,首先将所有人脸图像都变换到环形对称Gabor变换域,然后按照两种融合方案将不同... 与传统Gabor小波变换相比,环形对称Gabor变换(CSGT)具有信息冗余度低和严格的旋转不变性的优点。提出了一种基于环形对称Gabor变换与2DPCA的人脸识别新算法,首先将所有人脸图像都变换到环形对称Gabor变换域,然后按照两种融合方案将不同尺度的特征融合到一起,最后采用2DPCA方法进行特征提取和分类。在ORL人脸数据库上进行仿真实验并与传统的2DPCA、GT+2DPCA等方法做了对比,实验结果表明提出的算法不但取得了更好的识别效果,而且提高了识别速度。 展开更多
关键词 环形对称Gabor变换(CSGT) 成分分析(2DPCA) 人脸识别
在线阅读 下载PDF
图像特征抽取的MDNIB2DPCA方法 被引量:4
17
作者 万倬 朱嘉钢 陆晓 《计算机工程与应用》 CSCD 北大核心 2016年第9期177-183,共7页
在多方向二维主成分分析法MD2DPCA和无迭代双边二维主成分分析(NIB2DPCA)的基础上,提出了多方向无迭代双边二维主成分分析(MDNIB2DPCA)的特征抽取新方法。该方法可以对图像矩阵在多个方向上进行特征抽取,与MD2DPCA方法相比也提高了特征... 在多方向二维主成分分析法MD2DPCA和无迭代双边二维主成分分析(NIB2DPCA)的基础上,提出了多方向无迭代双边二维主成分分析(MDNIB2DPCA)的特征抽取新方法。该方法可以对图像矩阵在多个方向上进行特征抽取,与MD2DPCA方法相比也提高了特征抽取速度。在灰度人脸图像库上的对比实验表明,所提的方法可以提高灰度图像识别率两个百分点以上;进一步地,在基于NIB2DPCA的彩色图像识别方法的基础上,提出了将所提的MDNIB2DPCA替换NIB2DPCA的彩色图像处理的新方法。在彩色人脸库上的对比实验表明,所提方法的识别正确率也可提高约一个百分点。 展开更多
关键词 彩色人脸识别 成分分析法(2DPCA) 多方向无迭代双边二成分分析(MDNIB2DPCA) 分数等级融合 特征抽取
在线阅读 下载PDF
改进的模块2DPCA与MSD结合的人脸识别 被引量:2
18
作者 孔爱祥 王成儒 《计算机工程与应用》 CSCD 2014年第2期175-178,197,共5页
提出了一种改进的模块2DPCA与最大散度差鉴别分析相结合的人脸识别方法。该方法先对原始人脸图像采用改进的模块2DPCA抽取特征,然后对得到的特征图像的子图像块施行最大散度差鉴别分析,得到最终的特征图像。该方法不仅利用了原始图像的... 提出了一种改进的模块2DPCA与最大散度差鉴别分析相结合的人脸识别方法。该方法先对原始人脸图像采用改进的模块2DPCA抽取特征,然后对得到的特征图像的子图像块施行最大散度差鉴别分析,得到最终的特征图像。该方法不仅利用了原始图像的局部特征和类别信息,而且完全避免了使用矩阵的奇异值分解。在ORL人脸库上的实验结果验证了该方法的有效性。 展开更多
关键词 模块二成分分析(2DPCA) 最大散度差鉴别分析 人脸识别
在线阅读 下载PDF
一种M2DPCA和NSA相结合的人脸识别方法 被引量:1
19
作者 戴飞 陈秀宏 《计算机工程与应用》 CSCD 2012年第5期174-176,共3页
将非参数子空间分析方法(NSA)和模块化2DPCA方法相结合,提出了一种模块化2DPCA+NSA方法。NSA方法需将图像矩阵转化为向量后进行特征提取,导致数据维数很大,没有考虑到图像的局部特征,对图像矩阵进行分块,采用2DPCA进行特征提取,得到替... 将非参数子空间分析方法(NSA)和模块化2DPCA方法相结合,提出了一种模块化2DPCA+NSA方法。NSA方法需将图像矩阵转化为向量后进行特征提取,导致数据维数很大,没有考虑到图像的局部特征,对图像矩阵进行分块,采用2DPCA进行特征提取,得到替代原始图像的低维新模式,施行NSA。该法能有效提取图像的局部特征,而由于考虑到类内、类间的差异,可弥补PCA的缺陷。在ORL人脸库和XM2VTS人脸库上对LDA方法、NSA方法以及该方法分别进行了评价和测试,结果显示,所提方法在识别效果上优于LDA方法和NSA方法。 展开更多
关键词 模块化二成分分析法(M2DPCA) 非参数子空间分析方法(NSA) 特征提取 人脸识别
在线阅读 下载PDF
非线性角度2DPCA及其在人脸识别中的应用 被引量:1
20
作者 乔慧 周水生 《计算机工程与应用》 CSCD 北大核心 2021年第8期112-118,共7页
K2DPCA(Kernel-based 2D Principal Component Analysis)能够刻画图像的非线性特征,同时保留原始图像的二维数据结构和邻域信息,在人脸识别领域具有成功的运用,但其对异常值比较敏感。为克服此问题,将“角度”的概念引入非线性空间,基... K2DPCA(Kernel-based 2D Principal Component Analysis)能够刻画图像的非线性特征,同时保留原始图像的二维数据结构和邻域信息,在人脸识别领域具有成功的运用,但其对异常值比较敏感。为克服此问题,将“角度”的概念引入非线性空间,基于核方法提出Sin-K2DPCA,并采用F范数度量,将样本数据经非线性映射到高维空间后极小化相对重构误差。为进一步解决非线性的核矩阵规模较大、计算复杂度高的问题,利用Cholesky分解方法,计算大规模核矩阵K的低秩近似,提出了基于Cholesky分解的Chol+SinK2DPCA。实验结果表明,在ORL、Yale人脸数据库中,Chol+SinK2DPCA提高了识别率,并克服噪声的影响;在大规模数据集Extended YaleB中,Chol+SinK2DPCA有效解决了K2DPCA由于核矩阵规模过大而不能实现的问题。 展开更多
关键词 人脸识别 角度二成分分析(angle-2DPCA) 基于核的二成分分析(K2DPCA) F范数 CHOLESKY分解
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部