In order to analyze the possibility of detecting defects in bend pipe using low-frequency ultrasonic guided wave, the propagation of T(0,1) mode and L(0,2) mode through straight-curved-straight pipe sections was studi...In order to analyze the possibility of detecting defects in bend pipe using low-frequency ultrasonic guided wave, the propagation of T(0,1) mode and L(0,2) mode through straight-curved-straight pipe sections was studied. FE(finite element) models of bend pipe without defects and those with defects were introduced to analyze energy distribution, mode transition and defect detection of ultrasonic guided wave. FE simulation results were validated by experiments of four different bend pipes with circumferential defects in different positions. It is shown that most energy of T(0,1) mode or L(0,2) mode focuses on extrados of bend but little passes through intrados of bend, and T(0,1) mode or L(0,2) mode is converted to other possible non-axisymmetric modes when propagating through the bend and the defect after bend respectively. Furthermore, L(0,2) mode is more sensitive to circumferential notch than T(0,1) mode. The results of this work are beneficial for practical testing of pipes.展开更多
针对可重复使用飞行器热防护结构在复杂多场耦合环境下易产生层间脱粘损伤的关键问题,提出基于超声导波与域自适应迁移学习的无损检测方法。通过设计4类典型粘接缺陷的隔热瓦试件,结合双向正交扫描策略与超声激励–接收机制,实现粘接区...针对可重复使用飞行器热防护结构在复杂多场耦合环境下易产生层间脱粘损伤的关键问题,提出基于超声导波与域自适应迁移学习的无损检测方法。通过设计4类典型粘接缺陷的隔热瓦试件,结合双向正交扫描策略与超声激励–接收机制,实现粘接区域的高效覆盖检测。针对试件个体差异引起的信号漂移问题,采用基于峰值比例阈值的相位对齐方法,通过优化窗口长度同步保留损伤敏感特征并抑制噪声干扰。进一步构建域自适应迁移学习网络(Domain-adaptive transfer learning,DATL),实现跨试件损伤特征的分布对齐。试验表明,在跨试件测试场景下,DATL模型准确率仅下降3.9%,域间分布差异指数从0.31降至0.10;在目标域数据量不足40%时,其准确率仍达85%,较卷积神经网络(Convolutional neural network,CNN)提升19.4%。该方法缓解了对损伤类型和试件一致性的依赖,可降低在役热防护结构脱粘检测的误报率与漏检率,为可重复使用飞行器的快速无损检测与健康评估提供了一种可行的解决参考方案。展开更多
In this paper, an on-line ultrasonic H 2O 2 concentration meter operating according to the relationship between the concentration, temperature and ultrasonic velocity in H 2O 2 solution is introduced. The ultrasonic v...In this paper, an on-line ultrasonic H 2O 2 concentration meter operating according to the relationship between the concentration, temperature and ultrasonic velocity in H 2O 2 solution is introduced. The ultrasonic velocities in H 2O 2 solution are measured at different concentrations and temperatures.The velocity-concentration coefficients and velocity-temperature coefficients of H 2O 2 solution are calculated. In the on-line ultrasonic H 2O 2 concentration meter, the ultrasonic transducer installed outside the H 2O 2 solution pipeline generates an ultrasonic wave pulse. The ultrasonic wave travels through the pipeline of H 2O 2 solution. The computer transfers the ultrasonic travel time into ultrasonic velocity. The platinum resister is installed inside the H 2O 2 solution pipeline. The resistor variation caused by temperature is sent to the computer through the interface. The computer calculates the ultrasonic velocity and H 2O 2 temperature by means of velocity-concentration coefficients and velocity-temperature coefficients. It displays and prints the value of the instant H 2O 2 solution concentration, and meantime displays the 8 hour curve for H 2O 2 solution concentration variation in the screen. It also can give alarm and output a 4—20 mA analogue signal for automatic control in the production process.展开更多
基金Project(51265044)supported by the National Natural Science Foundation of ChinaProject(2013TT2028)supported by the Science and Technology Project of Hunan Province of ChinaProject(2012QK162)supported by the Science and Technology Project of General Administration of Quality Supervision,Inspection and Quarantine of China
文摘In order to analyze the possibility of detecting defects in bend pipe using low-frequency ultrasonic guided wave, the propagation of T(0,1) mode and L(0,2) mode through straight-curved-straight pipe sections was studied. FE(finite element) models of bend pipe without defects and those with defects were introduced to analyze energy distribution, mode transition and defect detection of ultrasonic guided wave. FE simulation results were validated by experiments of four different bend pipes with circumferential defects in different positions. It is shown that most energy of T(0,1) mode or L(0,2) mode focuses on extrados of bend but little passes through intrados of bend, and T(0,1) mode or L(0,2) mode is converted to other possible non-axisymmetric modes when propagating through the bend and the defect after bend respectively. Furthermore, L(0,2) mode is more sensitive to circumferential notch than T(0,1) mode. The results of this work are beneficial for practical testing of pipes.
文摘针对可重复使用飞行器热防护结构在复杂多场耦合环境下易产生层间脱粘损伤的关键问题,提出基于超声导波与域自适应迁移学习的无损检测方法。通过设计4类典型粘接缺陷的隔热瓦试件,结合双向正交扫描策略与超声激励–接收机制,实现粘接区域的高效覆盖检测。针对试件个体差异引起的信号漂移问题,采用基于峰值比例阈值的相位对齐方法,通过优化窗口长度同步保留损伤敏感特征并抑制噪声干扰。进一步构建域自适应迁移学习网络(Domain-adaptive transfer learning,DATL),实现跨试件损伤特征的分布对齐。试验表明,在跨试件测试场景下,DATL模型准确率仅下降3.9%,域间分布差异指数从0.31降至0.10;在目标域数据量不足40%时,其准确率仍达85%,较卷积神经网络(Convolutional neural network,CNN)提升19.4%。该方法缓解了对损伤类型和试件一致性的依赖,可降低在役热防护结构脱粘检测的误报率与漏检率,为可重复使用飞行器的快速无损检测与健康评估提供了一种可行的解决参考方案。
文摘In this paper, an on-line ultrasonic H 2O 2 concentration meter operating according to the relationship between the concentration, temperature and ultrasonic velocity in H 2O 2 solution is introduced. The ultrasonic velocities in H 2O 2 solution are measured at different concentrations and temperatures.The velocity-concentration coefficients and velocity-temperature coefficients of H 2O 2 solution are calculated. In the on-line ultrasonic H 2O 2 concentration meter, the ultrasonic transducer installed outside the H 2O 2 solution pipeline generates an ultrasonic wave pulse. The ultrasonic wave travels through the pipeline of H 2O 2 solution. The computer transfers the ultrasonic travel time into ultrasonic velocity. The platinum resister is installed inside the H 2O 2 solution pipeline. The resistor variation caused by temperature is sent to the computer through the interface. The computer calculates the ultrasonic velocity and H 2O 2 temperature by means of velocity-concentration coefficients and velocity-temperature coefficients. It displays and prints the value of the instant H 2O 2 solution concentration, and meantime displays the 8 hour curve for H 2O 2 solution concentration variation in the screen. It also can give alarm and output a 4—20 mA analogue signal for automatic control in the production process.