期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Reconstruction of pile-up events using a one-dimensional convolutional autoencoder for the NEDA detector array
1
作者 J.M.Deltoro G.Jaworski +15 位作者 A.Goasduff V.González A.Gadea M.Palacz J.J.Valiente-Dobón J.Nyberg S.Casans A.E.Navarro-Antón E.Sanchis G.de Angelis A.Boujrad S.Coudert T.Dupasquier S.Ertürk O.Stezowski R.Wadsworth 《Nuclear Science and Techniques》 2025年第2期62-70,共9页
Pulse pile-up is a problem in nuclear spectroscopy and nuclear reaction studies that occurs when two pulses overlap and distort each other,degrading the quality of energy and timing information.Different methods have ... Pulse pile-up is a problem in nuclear spectroscopy and nuclear reaction studies that occurs when two pulses overlap and distort each other,degrading the quality of energy and timing information.Different methods have been used for pile-up rejection,both digital and analogue,but some pile-up events may contain pulses of interest and need to be reconstructed.The paper proposes a new method for reconstructing pile-up events acquired with a neutron detector array(NEDA)using an one-dimensional convolutional autoencoder(1D-CAE).The datasets for training and testing the 1D-CAE are created from data acquired from the NEDA.The new pile-up signal reconstruction method is evaluated from the point of view of how similar the reconstructed signals are to the original ones.Furthermore,it is analysed considering the result of the neutron-gamma discrimination based on charge comparison,comparing the result obtained from original and reconstructed signals. 展开更多
关键词 1d-CAE Autoencoder CAE convolutional neural network(CNN) Neutron detector Neutron-gamma discrimination(NGd) Machine learning Pulse shape discrimination Pile-up pulse
在线阅读 下载PDF
Remaining Useful Life Prediction of Aeroengine Based on Principal Component Analysis and One-Dimensional Convolutional Neural Network 被引量:5
2
作者 LYU Defeng HU Yuwen 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第5期867-875,共9页
In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based... In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based on principal component analysis(PCA)and one-dimensional convolution neural network(1D-CNN)is proposed in this paper.Firstly,multiple state parameters corresponding to massive cycles of aeroengine are collected and brought into PCA for dimensionality reduction,and principal components are extracted for further time series prediction.Secondly,the 1D-CNN model is constructed to directly study the mapping between principal components and RUL.Multiple convolution and pooling operations are applied for deep feature extraction,and the end-to-end RUL prediction of aeroengine can be realized.Experimental results show that the most effective principal component from the multiple state parameters can be obtained by PCA,and the long time series of multiple state parameters can be directly mapped to RUL by 1D-CNN,so as to improve the efficiency and accuracy of RUL prediction.Compared with other traditional models,the proposed method also has lower prediction error and better robustness. 展开更多
关键词 AEROENGINE remaining useful life(RUL) principal component analysis(PCA) one-dimensional convolution neural network(1d-cnn) time series prediction state parameters
在线阅读 下载PDF
轻量级(2+1)D卷积结构的动态手势识别研究 被引量:4
3
作者 赵康 黎向锋 +1 位作者 李高扬 左敦稳 《微电子学与计算机》 2022年第9期46-54,共9页
目前,基于卷积神经网络的动态手势识别方法取得了巨大的进展,但神经网络模型具有很大的参数量,计算成本和内存占用较大,很难应用在设备资源有限的场合.以减少计算量和参数量为出发点,提出了一种轻量级(2+1)D卷积结构.该结构在(2+1)D卷... 目前,基于卷积神经网络的动态手势识别方法取得了巨大的进展,但神经网络模型具有很大的参数量,计算成本和内存占用较大,很难应用在设备资源有限的场合.以减少计算量和参数量为出发点,提出了一种轻量级(2+1)D卷积结构.该结构在(2+1)D卷积结构的基础上,将其中的3D卷积替换为3D深度可分离卷积,在输出向量维度不变的前提下,进一步减少了(2+1)D卷积结构的计算量和参数量.为了弥补时空特征在表征动态手势上的不足,融合注意力机制模块,专注于对运动特征的提取,结合轻量级(2+1)D卷积结构提取的时空特征,可以更好地表征手势动作.实验结果表明,注意力机制模块的插入,在不增加太多额外计算和空间成本的前提下,进一步提高了模型的识别精度.基于以上结构构建的模型,在20BN-jester、EgoGesture和IsoGD数据集上分别取得了96.62%、91.83%和60.1%的识别精度,模型参数量和浮点计算量分别为5.05M和12.81GFLOPs,相比于其他手势识别模型,计算成本和内存占用大大减少,实时手势识别速度达到每秒70帧. 展开更多
关键词 动态手势识别 卷积神经网络 轻量级(2+1)d卷积结构 注意力机制
在线阅读 下载PDF
Lightweight and highly robust memristor-based hybrid neural networks for electroencephalogram signal processing
4
作者 童霈文 徐晖 +5 位作者 孙毅 汪泳州 彭杰 廖岑 王伟 李清江 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期582-590,共9页
Memristor-based neuromorphic computing shows great potential for high-speed and high-throughput signal processing applications,such as electroencephalogram(EEG)signal processing.Nonetheless,the size of one-transistor ... Memristor-based neuromorphic computing shows great potential for high-speed and high-throughput signal processing applications,such as electroencephalogram(EEG)signal processing.Nonetheless,the size of one-transistor one-resistor(1T1R)memristor arrays is limited by the non-ideality of the devices,which prevents the hardware implementation of large and complex networks.In this work,we propose the depthwise separable convolution and bidirectional gate recurrent unit(DSC-BiGRU)network,a lightweight and highly robust hybrid neural network based on 1T1R arrays that enables efficient processing of EEG signals in the temporal,frequency and spatial domains by hybridizing DSC and BiGRU blocks.The network size is reduced and the network robustness is improved while ensuring the network classification accuracy.In the simulation,the measured non-idealities of the 1T1R array are brought into the network through statistical analysis.Compared with traditional convolutional networks,the network parameters are reduced by 95%and the network classification accuracy is improved by 21%at a 95%array yield rate and 5%tolerable error.This work demonstrates that lightweight and highly robust networks based on memristor arrays hold great promise for applications that rely on low consumption and high efficiency. 展开更多
关键词 MEMRISTOR LIGHTWEIGHT ROBUST hybrid neural networks depthwise separable convolution bidirectional gate recurrent unit(BiGRU) one-transistor one-resistor(1T1R)arrays
在线阅读 下载PDF
Automatic Classification of Swedish Metadata Using Dewey Decimal Classification:A Comparison of Approaches 被引量:2
5
作者 Koraljka Golub Johan Hagelback Anders Ardo 《Journal of Data and Information Science》 CSCD 2020年第1期18-38,共21页
Purpose:With more and more digital collections of various information resources becoming available,also increasing is the challenge of assigning subject index terms and classes from quality knowledge organization syst... Purpose:With more and more digital collections of various information resources becoming available,also increasing is the challenge of assigning subject index terms and classes from quality knowledge organization systems.While the ultimate purpose is to understand the value of automatically produced Dewey Decimal Classification(DDC)classes for Swedish digital collections,the paper aims to evaluate the performance of six machine learning algorithms as well as a string-matching algorithm based on characteristics of DDC.Design/methodology/approach:State-of-the-art machine learning algorithms require at least 1,000 training examples per class.The complete data set at the time of research involved 143,838 records which had to be reduced to top three hierarchical levels of DDC in order to provide sufficient training data(totaling 802 classes in the training and testing sample,out of 14,413 classes at all levels).Findings:Evaluation shows that Support Vector Machine with linear kernel outperforms other machine learning algorithms as well as the string-matching algorithm on average;the string-matching algorithm outperforms machine learning for specific classes when characteristics of DDC are most suitable for the task.Word embeddings combined with different types of neural networks(simple linear network,standard neural network,1 D convolutional neural network,and recurrent neural network)produced worse results than Support Vector Machine,but reach close results,with the benefit of a smaller representation size.Impact of features in machine learning shows that using keywords or combining titles and keywords gives better results than using only titles as input.Stemming only marginally improves the results.Removed stop-words reduced accuracy in most cases,while removing less frequent words increased it marginally.The greatest impact is produced by the number of training examples:81.90%accuracy on the training set is achieved when at least 1,000 records per class are available in the training set,and 66.13%when too few records(often less than A Comparison of Approaches100 per class)on which to train are available—and these hold only for top 3 hierarchical levels(803 instead of 14,413 classes).Research limitations:Having to reduce the number of hierarchical levels to top three levels of DDC because of the lack of training data for all classes,skews the results so that they work in experimental conditions but barely for end users in operational retrieval systems.Practical implications:In conclusion,for operative information retrieval systems applying purely automatic DDC does not work,either using machine learning(because of the lack of training data for the large number of DDC classes)or using string-matching algorithm(because DDC characteristics perform well for automatic classification only in a small number of classes).Over time,more training examples may become available,and DDC may be enriched with synonyms in order to enhance accuracy of automatic classification which may also benefit information retrieval performance based on DDC.In order for quality information services to reach the objective of highest possible precision and recall,automatic classification should never be implemented on its own;instead,machine-aided indexing that combines the efficiency of automatic suggestions with quality of human decisions at the final stage should be the way for the future.Originality/value:The study explored machine learning on a large classification system of over 14,000 classes which is used in operational information retrieval systems.Due to lack of sufficient training data across the entire set of classes,an approach complementing machine learning,that of string matching,was applied.This combination should be explored further since it provides the potential for real-life applications with large target classification systems. 展开更多
关键词 LIBRIS dewey decimal Classification Automatic classification Machine learning Support Vector Machine Multinomial Naive Bayes Simple linear network Standard neural network 1d convolutional neural network Recurrent neural network Word embeddings String matching
在线阅读 下载PDF
压缩感知结合卷积网络的天然气管道泄漏孔径识别 被引量:11
6
作者 温江涛 付磊 +3 位作者 孙洁娣 王涛 张光宇 张鹏程 《振动与冲击》 EI CSCD 北大核心 2020年第21期17-23,共7页
针对传统天然气管道泄漏孔径检测面临的原始数据冗余性大、特征选取主观依赖性强以及复杂环境下识别准确率低等问题,提出了一种将压缩感知与深度卷积神经网络相结合的泄漏孔径识别方法。首先利用随机高斯矩阵对原始泄漏信号进行压缩采集... 针对传统天然气管道泄漏孔径检测面临的原始数据冗余性大、特征选取主观依赖性强以及复杂环境下识别准确率低等问题,提出了一种将压缩感知与深度卷积神经网络相结合的泄漏孔径识别方法。首先利用随机高斯矩阵对原始泄漏信号进行压缩采集,以较少的压缩感知域数据获取全部泄漏信息;然后构建深度一维卷积神经网络,将压缩采集数据送入网络中实现自适应特征提取及高准确度泄漏孔径识别;还对主要参数的影响进行了深入的分析。实验结果表明,该方法能够快速、准确地实现天然气管道泄漏孔径识别,且在低信噪比环境下具有较好的鲁棒性,总体识别效果优于传统的分类方法。 展开更多
关键词 管道泄漏孔径识别 压缩感知采集 1维卷积网络 自适应特征提取
在线阅读 下载PDF
基于线性内插神经网络的雷达目标一维距离像识别 被引量:6
7
作者 孙光民 刘国岁 王蕴红 《电子科学学刊》 CSCD 1999年第1期97-103,共7页
本文提出一种新颖的神经网络模型——线性内插神经网络(Linear InterpolationNeural Network,LINN)用于雷达目标一维距离像识别。它可避开提取不变特征的难点,利用目标一维距离像特征随姿态变化的信息来提高目标识别性能。实验结果表明... 本文提出一种新颖的神经网络模型——线性内插神经网络(Linear InterpolationNeural Network,LINN)用于雷达目标一维距离像识别。它可避开提取不变特征的难点,利用目标一维距离像特征随姿态变化的信息来提高目标识别性能。实验结果表明,采用LINN很好地解决了在大的姿态角范围内识别目标时所存在的计算量与识别率的矛盾,提高了雷达对任意姿态目标的识别性能。 展开更多
关键词 雷达目标识别 神经网络 一维距离像 线性内插
在线阅读 下载PDF
基于SANC和一维卷积神经网络的齿轮箱轴承故障诊断 被引量:17
8
作者 高佳豪 郭瑜 伍星 《振动与冲击》 EI CSCD 北大核心 2020年第19期204-209,257,共7页
近来以深度学习算法为代表的滚动轴承特征智能提取和故障辨识技术被广泛研究,但目前研究大多局限于无强干扰的轴承故障。在齿轮箱存在较强齿轮振动干扰条件下,基于此类算法的轴承故障辨识率将显著降低。为提高在较强齿轮振动信号干扰下... 近来以深度学习算法为代表的滚动轴承特征智能提取和故障辨识技术被广泛研究,但目前研究大多局限于无强干扰的轴承故障。在齿轮箱存在较强齿轮振动干扰条件下,基于此类算法的轴承故障辨识率将显著降低。为提高在较强齿轮振动信号干扰下齿轮箱轴承故障智能辨识的准确率,提出了一种基于自参考自适应噪声消除技术(SANC)和一维卷积神经网络(1D-CNN)的齿轮箱轴承故障诊断方法。首先利用SANC将齿轮箱振动信号分离为周期性信号分量成分和随机信号分量,抑制齿轮等周期强干扰成分,再通过1D-CNN对包含轴承故障特征的随机信号成分进行智能特征提取和识别,实现在齿轮振动干扰下齿轮箱轴承故障辨识率的提高。通过与不同方法的对比验证了本文所提方法的优势和有效性。 展开更多
关键词 齿轮箱 自参考自适应噪声消除技术 一维卷积神经网络 故障诊断
在线阅读 下载PDF
基于三维卷积神经网络模型的吉林一号光谱星影像森林类型分类 被引量:2
9
作者 刘婷 包广道 +3 位作者 李竺强 朱瑞飞 包颖 张忠辉 《安徽农业科学》 CAS 2023年第13期96-101,108,共7页
为探究基于三维卷积神经网络模型应用吉林一号光谱卫星数据的森林类型分类效果,以安图县与敦化市交界地带为研究区,采用吉林一号光谱卫星影像为主要数据源,基于三维卷积神经网络深度学习模型对研究区森林类型进行分类,并与传统的随机森... 为探究基于三维卷积神经网络模型应用吉林一号光谱卫星数据的森林类型分类效果,以安图县与敦化市交界地带为研究区,采用吉林一号光谱卫星影像为主要数据源,基于三维卷积神经网络深度学习模型对研究区森林类型进行分类,并与传统的随机森林分类方法进行对比分析。结果表明:当三维卷积神经网络的训练样本数量为2400,训练次数为70000时,分类效果最佳。基于三维卷积神经网络方法的总体分类精度为92.9%,Kappa系数为0.92;与随机森林方法分类结果对比,总体分类精度和Kappa系数分别提高了2.8百分点和0.03;三维卷积神经网络能够更加充分地利用遥感影像丰富的光谱信息和空间信息,提高森林类型的分类精度,在斑块构成和景观破碎度方面均得到较大提升,内部完整度较高,破碎化程度较轻微,更贴合实际工作需要。说明国产吉林一号光谱卫星遥感数据可以有效地对森林类型进行识别,在林业的生产经营上具有极大的应用潜力。 展开更多
关键词 三维卷积神经网络 吉林一号光谱卫星 森林类型分类
在线阅读 下载PDF
基于卷积神经网络的铁路故障持续时间预测方法研究 被引量:1
10
作者 朱月皓 孟令云 +2 位作者 廖正文 王先枢 田海宁 《铁路计算机应用》 2023年第12期13-17,共5页
随着铁路网络复杂程度的不断提高,铁路运营部门调度难度日益增加,亟须研究精准预测铁路故障持续时间的方法,从而提高铁路调度系统应对各类风险和事故的能力。文章基于“安监报1”的文本数据,结合Jieba分词、Word2vec词向量模型等自然语... 随着铁路网络复杂程度的不断提高,铁路运营部门调度难度日益增加,亟须研究精准预测铁路故障持续时间的方法,从而提高铁路调度系统应对各类风险和事故的能力。文章基于“安监报1”的文本数据,结合Jieba分词、Word2vec词向量模型等自然语言处理技术,构建了一种基于卷积神经网络(CNN,Convolutional Neural Network)的铁路故障持续时间预测模型,并基于中国铁路沈阳局集团有限公司的实际生成数据进行试验。试验结果表明,本预测模型能够较为快速、准确地获取铁路故障持续时间及其概率分布,为列车的运行调整提供参考。 展开更多
关键词 铁路故障持续时间 自然语言处理 卷积神经网络(CNN) Word2vec 安监报1
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部