With the extensive application of large-scale array antennas,the increasing number of array elements leads to the increasing dimension of received signals,making it difficult to meet the real-time requirement of direc...With the extensive application of large-scale array antennas,the increasing number of array elements leads to the increasing dimension of received signals,making it difficult to meet the real-time requirement of direction of arrival(DOA)estimation due to the computational complexity of algorithms.Traditional subspace algorithms require estimation of the covariance matrix,which has high computational complexity and is prone to producing spurious peaks.In order to reduce the computational complexity of DOA estimation algorithms and improve their estimation accuracy under large array elements,this paper proposes a DOA estimation method based on Krylov subspace and weighted l_(1)-norm.The method uses the multistage Wiener filter(MSWF)iteration to solve the basis of the Krylov subspace as an estimate of the signal subspace,further uses the measurement matrix to reduce the dimensionality of the signal subspace observation,constructs a weighted matrix,and combines the sparse reconstruction to establish a convex optimization function based on the residual sum of squares and weighted l_(1)-norm to solve the target DOA.Simulation results show that the proposed method has high resolution under large array conditions,effectively suppresses spurious peaks,reduces computational complexity,and has good robustness for low signal to noise ratio(SNR)environment.展开更多
Tomographic synthetic aperture radar(TomoSAR)imaging exploits the antenna array measurements taken at different elevation aperture to recover the reflectivity function along the elevation direction.In these years,for ...Tomographic synthetic aperture radar(TomoSAR)imaging exploits the antenna array measurements taken at different elevation aperture to recover the reflectivity function along the elevation direction.In these years,for the sparse elevation distribution,compressive sensing(CS)is a developed favorable technique for the high-resolution elevation reconstruction in TomoSAR by solving an L_(1) regularization problem.However,because the elevation distribution in the forested area is nonsparse,if we want to use CS in the recovery,some basis,such as wavelet,should be exploited in the sparse L_(1/2) representation of the elevation reflectivity function.This paper presents a novel wavelet-based L_(2) regularization CS-TomoSAR imaging method of the forested area.In the proposed method,we first construct a wavelet basis,which can sparsely represent the elevation reflectivity function of the forested area,and then reconstruct the elevation distribution by using the L_(1/2) regularization technique.Compared to the wavelet-based L_(1) regularization TomoSAR imaging,the proposed method can improve the elevation recovered quality efficiently.展开更多
On a compact Riemann surface with finite punctures P_(1),…P_(k),we define toric curves as multivalued,totallyunramified holomorphic maps to P^(n)with monodromy in a maximal torus of PSU(n+1).Toric solutions to SU(n+1...On a compact Riemann surface with finite punctures P_(1),…P_(k),we define toric curves as multivalued,totallyunramified holomorphic maps to P^(n)with monodromy in a maximal torus of PSU(n+1).Toric solutions to SU(n+1)Todasystems on X\{P_(1);…;P_(k)}are recognized by the associated toric curves in.We introduce character n-ensembles as-tuples of meromorphic one-forms with simple poles and purely imaginary periods,generating toric curves on minus finitelymany points.On X,we establish a correspondence between character-ensembles and toric solutions to the SU(n+1)system with finitely many cone singularities.Our approach not only broadens seminal solutions with two conesingularities on the Riemann sphere,as classified by Jost-Wang(Int.Math.Res.Not.,2002,(6):277-290)andLin-Wei-Ye(Invent.Math.,2012,190(1):169-207),but also advances beyond the limits of Lin-Yang-Zhong’s existencetheorems(J.Differential Geom.,2020,114(2):337-391)by introducing a new solution class.展开更多
基金supported by the National Basic Research Program of China。
文摘With the extensive application of large-scale array antennas,the increasing number of array elements leads to the increasing dimension of received signals,making it difficult to meet the real-time requirement of direction of arrival(DOA)estimation due to the computational complexity of algorithms.Traditional subspace algorithms require estimation of the covariance matrix,which has high computational complexity and is prone to producing spurious peaks.In order to reduce the computational complexity of DOA estimation algorithms and improve their estimation accuracy under large array elements,this paper proposes a DOA estimation method based on Krylov subspace and weighted l_(1)-norm.The method uses the multistage Wiener filter(MSWF)iteration to solve the basis of the Krylov subspace as an estimate of the signal subspace,further uses the measurement matrix to reduce the dimensionality of the signal subspace observation,constructs a weighted matrix,and combines the sparse reconstruction to establish a convex optimization function based on the residual sum of squares and weighted l_(1)-norm to solve the target DOA.Simulation results show that the proposed method has high resolution under large array conditions,effectively suppresses spurious peaks,reduces computational complexity,and has good robustness for low signal to noise ratio(SNR)environment.
基金This work was supported by the Fundamental Research Funds for the Central Universities(NE2020004)the National Natural Science Foundation of China(61901213)+3 种基金the Natural Science Foundation of Jiangsu Province(BK20190397)the Aeronautical Science Foundation of China(201920052001)the Young Science and Technology Talent Support Project of Jiangsu Science and Technology Associationthe Foundation of Graduate Innovation Center in Nanjing University of Aeronautics and Astronautics(kfjj20200419).
文摘Tomographic synthetic aperture radar(TomoSAR)imaging exploits the antenna array measurements taken at different elevation aperture to recover the reflectivity function along the elevation direction.In these years,for the sparse elevation distribution,compressive sensing(CS)is a developed favorable technique for the high-resolution elevation reconstruction in TomoSAR by solving an L_(1) regularization problem.However,because the elevation distribution in the forested area is nonsparse,if we want to use CS in the recovery,some basis,such as wavelet,should be exploited in the sparse L_(1/2) representation of the elevation reflectivity function.This paper presents a novel wavelet-based L_(2) regularization CS-TomoSAR imaging method of the forested area.In the proposed method,we first construct a wavelet basis,which can sparsely represent the elevation reflectivity function of the forested area,and then reconstruct the elevation distribution by using the L_(1/2) regularization technique.Compared to the wavelet-based L_(1) regularization TomoSAR imaging,the proposed method can improve the elevation recovered quality efficiently.
基金supported by the National Natural Science Foundation of China(11931009,12271495,11971450,and 12071449)Anhui Initiative in Quantum Information Technologies(AHY150200)the Project of Stable Support for Youth Team in Basic Research Field,Chinese Academy of Sciences(YSBR-001).
文摘On a compact Riemann surface with finite punctures P_(1),…P_(k),we define toric curves as multivalued,totallyunramified holomorphic maps to P^(n)with monodromy in a maximal torus of PSU(n+1).Toric solutions to SU(n+1)Todasystems on X\{P_(1);…;P_(k)}are recognized by the associated toric curves in.We introduce character n-ensembles as-tuples of meromorphic one-forms with simple poles and purely imaginary periods,generating toric curves on minus finitelymany points.On X,we establish a correspondence between character-ensembles and toric solutions to the SU(n+1)system with finitely many cone singularities.Our approach not only broadens seminal solutions with two conesingularities on the Riemann sphere,as classified by Jost-Wang(Int.Math.Res.Not.,2002,(6):277-290)andLin-Wei-Ye(Invent.Math.,2012,190(1):169-207),but also advances beyond the limits of Lin-Yang-Zhong’s existencetheorems(J.Differential Geom.,2020,114(2):337-391)by introducing a new solution class.