期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
基于高斯混合模型的风电场群功率波动概率密度分布函数研究 被引量:43
1
作者 崔杨 杨海威 李鸿博 《电网技术》 EI CSCD 北大核心 2016年第4期1107-1112,共6页
如何描述风电功率波动的概率密度分布特性一直是风电联网运行分析领域的难点。在利用概率密度函数法分析风电功率波动特性的基础上,首先验证了采用多种单一分布函数模型拟合风电波动概率密度分布特性的效果较差,并根据列维定理揭示了风... 如何描述风电功率波动的概率密度分布特性一直是风电联网运行分析领域的难点。在利用概率密度函数法分析风电功率波动特性的基础上,首先验证了采用多种单一分布函数模型拟合风电波动概率密度分布特性的效果较差,并根据列维定理揭示了风电场群出力波动概率密度分布特性呈现多种分布的规律;在此基础上提出采用高斯混合模型替代单一分布函数模型来拟合风电波动概率密度分布特性的方法。仿真结果表明,高斯混合模型具有良好的拟合效果,适用于描述大型风电场群出力波动的概率密度分布特性。 展开更多
关键词 风电功率波动 概率密度分布 拟合效果 单一分布函数模型 高斯混合模型
在线阅读 下载PDF
基于高斯混合模型的非高斯随机振动幅值概率密度函数 被引量:10
2
作者 程红伟 陶俊勇 +1 位作者 蒋瑜 陈循 《振动与冲击》 EI CSCD 北大核心 2014年第5期115-119,共5页
针对非高斯振动信号的幅值概率密度函数难以用数学模型表述的问题,提出了基于高斯混合模型的非高斯概率密度函数表示方法。首先,基于时域样本信号得到非高斯振动信号的高阶矩估计值。其次,基于高斯随机过程偶次高阶矩之间的定量关系,结... 针对非高斯振动信号的幅值概率密度函数难以用数学模型表述的问题,提出了基于高斯混合模型的非高斯概率密度函数表示方法。首先,基于时域样本信号得到非高斯振动信号的高阶矩估计值。其次,基于高斯随机过程偶次高阶矩之间的定量关系,结合二阶高斯混合模型建立方程组,求解得到混合模型中每个高斯分量的方差和权值。然后,将各高斯分量的权值和方差代入高斯混合模型,得到适用于对称非高斯振动信号的幅值概率密度函数。最后,通过仿真信号和实测振动信号,验证了该方法的有效性和适用性。 展开更多
关键词 高斯随机振动 高斯混合模型 概率密度函数(PDF) 高阶矩 PROBABILITY DENSITY function (PDF)
在线阅读 下载PDF
混合高斯概率密度模型参数的期望最大化估计 被引量:21
3
作者 王平波 蔡志明 刘旺锁 《声学技术》 CSCD 北大核心 2007年第3期498-502,共5页
混合高斯模型是对非高斯数据进行概率密度拟合典型模型,其参数估计可以通过期望最大化(EM)迭代算法获得。多维混合高斯模型参数的EM估计因结构庞杂而难以求解,而对主动检测背景的统计特性拟合来说,一维的混合高斯模型一般即已足够。描... 混合高斯模型是对非高斯数据进行概率密度拟合典型模型,其参数估计可以通过期望最大化(EM)迭代算法获得。多维混合高斯模型参数的EM估计因结构庞杂而难以求解,而对主动检测背景的统计特性拟合来说,一维的混合高斯模型一般即已足够。描述了该情形下的混合高斯模型及其参数估计问题之后,导出了一种工程实用的、简化的EM迭代算法,并给出了可计算机编程实现的算法流程图。然后详细探讨了对EM估计精度与速度有着重要影响的参数初始化问题,给出了三种可选择的初值设置方案:高速度方案、高精度方案和二者的折衷方案,并分析了它们各自的适用场合。最后,结合一组数值仿真实例,演示了EM迭代算法的良好的混合高斯模型参数估计性能。 展开更多
关键词 混合高斯 概率密度模型 EM 最大似然估计
在线阅读 下载PDF
利用高斯混合模型实现概率密度函数逼近 被引量:17
4
作者 袁礼海 李钊 宋建社 《无线电通信技术》 2007年第2期20-22,共3页
针对图像的概率分布密度函数的不确定,利用有限高斯混合模型逼近图像的概率分布密度函数。理论上证明了有限高斯混合模型可以以任意精度正逼近实数上的非负黎曼可积函数,特别可以逼近任意的概率分布密度函数。实例表明有限高斯混合模型... 针对图像的概率分布密度函数的不确定,利用有限高斯混合模型逼近图像的概率分布密度函数。理论上证明了有限高斯混合模型可以以任意精度正逼近实数上的非负黎曼可积函数,特别可以逼近任意的概率分布密度函数。实例表明有限高斯混合模型逼近已知分布密度函数或未知分布密度函数时,具有逼近精度高等优点,为函数逼近提供了理论和技术支持。 展开更多
关键词 高斯混合模型 函数逼近 概率密度函数 高斯分布
在线阅读 下载PDF
混响的混合高斯概率密度建模 被引量:3
5
作者 卫红凯 王平波 +1 位作者 蔡志明 蒋来兴 《声学技术》 CSCD 北大核心 2007年第3期514-518,共5页
混合高斯模型能够有效地拟合混响背景的一维概率密度分布。常用的混合高斯概率密度模型参数估计方法是EM迭代算法,但这种算法的主要缺点是估计精度过分依赖于初始值。而GreedyEM算法通过往混合模型中不断地加入高斯分量,能很好地解决这... 混合高斯模型能够有效地拟合混响背景的一维概率密度分布。常用的混合高斯概率密度模型参数估计方法是EM迭代算法,但这种算法的主要缺点是估计精度过分依赖于初始值。而GreedyEM算法通过往混合模型中不断地加入高斯分量,能很好地解决这一问题。文章将多维图象处理中的GreedyEM算法加以合理简化,并给出模型自动定阶方法,从而成功应用于水声混响的一维混合高斯模型建模中。实验结果表明:应用新算法能从混响接收数据中准确拟合其概率密度曲线,并且能适应不同的数据长度,具有很好的通用性。 展开更多
关键词 混合高斯 概率密度模型 EM GreedyEM
在线阅读 下载PDF
基于高斯混合模型的采煤工作面冲击危险性评价 被引量:3
6
作者 崔峰 李宜霏 +4 位作者 贾冲 陆长亮 何仕凤 张随林 田梦琪 《煤田地质与勘探》 EI CAS CSCD 北大核心 2024年第10期85-96,共12页
【目的】深入了解声发射或微震能量分布所蕴含的概率学信息,对于工作面回采过程中的冲击危险性评价具有重要意义。【方法】以陕西大佛寺煤矿4号煤层40111工作面作为工程背景,运用物理相似模拟实验、理论分析、现场监测等相关方法进行分... 【目的】深入了解声发射或微震能量分布所蕴含的概率学信息,对于工作面回采过程中的冲击危险性评价具有重要意义。【方法】以陕西大佛寺煤矿4号煤层40111工作面作为工程背景,运用物理相似模拟实验、理论分析、现场监测等相关方法进行分析,研究了声发射监测数据在回采过程中的演化规律,阐明了声发射能量概率分布呈现波动性的物理意义,提出了基于高斯混合模型(Gaussianminture model,GMM)及置信区间的冲击危险性评价指标模型,并由现场微震数据进行验证。【结果和结论】结果表明:回采过程中上覆岩层周期性垮落并伴随声发射能量的集中释放。总能量的概率密度函数呈现多自由度的非对称分布,通过对比残差平方和等多项拟合效果指标,确定高斯混合模型为最佳拟合模型。基于EM(expectation maximization)算法的GMM聚类分析,将声发射事件总能量分布划分为两类:高频低能型和低频高能型,其中低频高能型与冲击事件的突发性和高能量破坏特征一致。依据概率-能量梯度变化特征,对工作面开采过程中冲击危险性进行了评估。研究成果为采煤工作面冲击危险性评价提供了概率学上的创新思路,具有在冲击地压监测预警及后续防治中的潜在应用价值。 展开更多
关键词 高斯混合模型 概率密度分布法 聚类分析 冲击危险性评价 动力灾害预警
在线阅读 下载PDF
偏斜非高斯随机振动信号幅值概率密度函数研究 被引量:7
7
作者 程红伟 陶俊勇 +1 位作者 陈循 蒋瑜 《振动与冲击》 EI CSCD 北大核心 2014年第12期121-125,144,共6页
偏斜非高斯振动信号幅值概率密度没有明确、简洁的解析表达式。研究概率密度的解析表达式,对于非高斯振动理论研究具有重要意义。针对以上需求,提出了一种基于高斯混合模型的概率密度函数表示方法。首先,通过时间样本序列得到偏斜非高... 偏斜非高斯振动信号幅值概率密度没有明确、简洁的解析表达式。研究概率密度的解析表达式,对于非高斯振动理论研究具有重要意义。针对以上需求,提出了一种基于高斯混合模型的概率密度函数表示方法。首先,通过时间样本序列得到偏斜非高斯振动信号前五阶矩的估计值。其次,根据平稳高斯随机过程各阶矩之间的定量关系,结合二阶高斯混合模型的数学表达式建立方程组,求解得到混合模型中每个高斯分量的均值、标准差和权重系数。然后,将每个高斯分量的参数代入高斯混合模型,得到偏斜非高斯振动信号的幅值概率密度的解析表达式。最后,将所提出的方法应用于仿真非高斯加速度信号和实测非高斯振动应力信号,充分验证了该方法的有效性和适用性。 展开更多
关键词 高斯 高斯混合模型 概率密度函数 偏度 峭度
在线阅读 下载PDF
基于高斯混合模型的物流非高斯随机振动损伤分析
8
作者 郭涛 葛长风 +3 位作者 夏斯璇 殷诚 林康 钱静 《振动与冲击》 EI CSCD 北大核心 2024年第12期203-211,共9页
针对公路运输环境中的振动信号具有明显的非高斯性,提出一种非高斯随机振动疲劳损伤分析方法。为了描述振动信号的幅值概率密度分布,采用移动加速度均方根来代表该段信号的振动强度,并引入高斯混合模型对加速度均方根值进行描述。在此... 针对公路运输环境中的振动信号具有明显的非高斯性,提出一种非高斯随机振动疲劳损伤分析方法。为了描述振动信号的幅值概率密度分布,采用移动加速度均方根来代表该段信号的振动强度,并引入高斯混合模型对加速度均方根值进行描述。在此基础上结合Tovo-Benasciutti方法和Dirlik方法推导出非高斯宽带频域疲劳损伤计算方法。最后,以雨流计数法作为参考,对不同峭度的实测振动信号进行疲劳损伤分析,结果表明,与传统频域疲劳损伤计算方法相比较,提出的非高斯疲劳损伤方法具有更高的计算精度。该研究对于运输包装件的随机振动加速试验设计有实际意义。 展开更多
关键词 高斯随机振动 高斯混合模型 概率密度函数 运输包装
在线阅读 下载PDF
基于高斯混合分布模型的风电功率预测误差统计分析研究 被引量:14
9
作者 张金环 王超群 +1 位作者 张彤 周博文 《智慧电力》 北大核心 2020年第7期59-64,72,共7页
针对风电功率预测误差的统计分析,研究了一种基于高斯混合模型的风电功率预测误差分布,采用期望最大化算法,从统计学角度分析了风电功率负荷预测误差数据,并且在理论上证明了该方法的合理性。该方法的优点在于,无论其统计分布是怎样的,... 针对风电功率预测误差的统计分析,研究了一种基于高斯混合模型的风电功率预测误差分布,采用期望最大化算法,从统计学角度分析了风电功率负荷预测误差数据,并且在理论上证明了该方法的合理性。该方法的优点在于,无论其统计分布是怎样的,所有风电功率预测误差的概率密度函数都可以使用高斯混合模型近似表示,然后进行适当的子模型削减。通过对高斯混合模型与其他各种统计分布模型的性能进行比较,证明了高斯混合模型在风电功率预测误差统计分析应用中的有效性。 展开更多
关键词 风电功率预测 高斯混合模型 概率密度估计 期望最大化 预测误差
在线阅读 下载PDF
基于高斯混合模型的期望最大化聚类算法 被引量:9
10
作者 尹楠 《统计与决策》 CSSCI 北大核心 2017年第4期87-89,共3页
文章介绍了基于高斯混合模型的期望最大化聚类算法,并对模型进行了简化,运用案例分析了该模型在经济管理领域中的应用,利用可视化的图形展示了研究样本的概率密度。
关键词 高斯混合模型 概率密度 聚类
在线阅读 下载PDF
一种基于概率密度的数据流聚类算法
11
作者 张伟 陈春燕 《计算机应用》 CSCD 北大核心 2007年第4期881-883,共3页
数据流具有数据量无限且流速快等特点,使得传统的聚类算法不能直接应用于数据流聚类问题。针对该问题,提出了一种基于概率密度的数据流聚类算法。此方法不需要存储全部的历史数据,只需要存储新到达的数据并对其应用EM算法,利用高斯混合... 数据流具有数据量无限且流速快等特点,使得传统的聚类算法不能直接应用于数据流聚类问题。针对该问题,提出了一种基于概率密度的数据流聚类算法。此方法不需要存储全部的历史数据,只需要存储新到达的数据并对其应用EM算法,利用高斯混合模型增量式地更新概率密度函数。实验表明,该算法对于解决数据流聚类问题非常有效。 展开更多
关键词 数据流 聚类 高斯混合模型 概率密度
在线阅读 下载PDF
高斯混合模型自适应盲信号分离
12
作者 马诚 李云红 陈锦妮 《现代电子技术》 2022年第13期35-40,共6页
信号概率密度函数估计是盲信号分离的关键步骤,其估计的好坏直接影响算法的性能。传统的盲信号分离算法中所用的信号概率密度函数一般只适合轻拖尾信号,而无法准确描述重拖尾信号、冲击脉冲信号的概率特性,使得分离效果较差。针对此问题... 信号概率密度函数估计是盲信号分离的关键步骤,其估计的好坏直接影响算法的性能。传统的盲信号分离算法中所用的信号概率密度函数一般只适合轻拖尾信号,而无法准确描述重拖尾信号、冲击脉冲信号的概率特性,使得分离效果较差。针对此问题,提出一种高斯混合模型自适应盲信号分离算法。该算法采用高斯混合模型的概率密度函数估计技术,可以根据高斯核函数理论直接对混合信号的评价函数进行估计,从而实现盲信号分离。文中就轻拖尾与轻拖尾信号的混合,重拖尾与重拖尾信号的混合,以及轻拖尾与重拖尾信号的混合三种情况进行了仿真实验验证,并与Kernel ICA、广义高斯模型、扩展最大熵进行对比。通过不同样本数目的盲信号分离结果可知,文中算法的分离效果较好,具有较高的信噪比。 展开更多
关键词 盲信号分离 概率密度函数 评价函数 高斯混合模型 轻拖尾信号 重拖尾信号 信噪比
在线阅读 下载PDF
基于统计感知策略的高斯混合模型求解方法 被引量:4
13
作者 陈佳琪 何玉林 +1 位作者 黄哲学 FOURNIER-VIGER Philippe 《数据采集与处理》 CSCD 北大核心 2023年第3期525-538,共14页
高斯混合模型(Gaussian mixture model,GMM)是一种经典的概率模型,常被用于无监督学习领域来确定无类别标记样本点的类别分布。作为求解GMM参数的重要技术,期望最大化(Expectation maximization,EM)算法通过计算GMM对应似然函数的最优... 高斯混合模型(Gaussian mixture model,GMM)是一种经典的概率模型,常被用于无监督学习领域来确定无类别标记样本点的类别分布。作为求解GMM参数的重要技术,期望最大化(Expectation maximization,EM)算法通过计算GMM对应似然函数的最优解确定基模型自身参数以及基模型的混合系数。利用EM算法求解GMM存在如下两个缺陷:EM算法易于陷入局部最优解以及EM算法确定GMM基模型相关参数的不稳定,尤其是针对多维随机变量。本文提出了一种基于统计感知(Statistical⁃aware,SA)策略的GMM求解方法——SA⁃GMM方法。该方法从估计给定数据集的未知概率密度函数入手,建立了核密度估计(Kernel density estimation,KDE)与GMM之间的关联。为避免KDE对“过平滑”窗口的选取,设计了同时最小化KDE与GMM之间的经验风险和KDE窗口结构风险的目标函数,进而确定了GMM的最优参数。在11个标准概率分布上的实验证明了SA⁃GMM方法的可行性、合理性和有效性,同时结果也表明SA⁃GMM能够获得显著优于基于EM算法的GMM及其变体的概率密度函数估计表现。 展开更多
关键词 高斯混合模型 概率密度函数估计 统计感知 经验风险 结构风险 粒子群优化
在线阅读 下载PDF
基于惩罚高斯混合模型的微阵列基因表达数据分析
14
作者 石玉 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第3期1-7,共7页
随着现代生物技术的发展,基于基因表达数据的肿瘤分型诊断已成为DNA微阵列的重要应用领域。提出一种基于基因表达数据的肿瘤分型诊断新方法,并在理论上给出模型解释。该方法通过对高斯混合模型加上一个L1惩罚实现了肿瘤分类和信息基因... 随着现代生物技术的发展,基于基因表达数据的肿瘤分型诊断已成为DNA微阵列的重要应用领域。提出一种基于基因表达数据的肿瘤分型诊断新方法,并在理论上给出模型解释。该方法通过对高斯混合模型加上一个L1惩罚实现了肿瘤分类和信息基因选择的有机结合,从而用较少的变量达到更高的识别率。实验结果显示,无论是在模拟数据中还是五个微阵列数据集中,提出的方法都是高效稳定的。 展开更多
关键词 微阵列数据 肿瘤诊断 基因选择 混合高斯模型 L1惩罚
在线阅读 下载PDF
基于熵调整模糊c-均值聚类的时频能量混合模型 被引量:3
15
作者 田光明 陈光(?) 《信号处理》 CSCD 北大核心 2005年第1期1-6,共6页
本文提出了一种改进由时频不相交分量组成信号的双线性时频分布的分辨率和可读性的方法。用修正的Xie-Beni聚类有效性指标对熵调整模糊c-均值聚类算法进行拓展将模糊聚类与密度估计相结合,实现了信号时频分量的识别和建模;信号的时频能... 本文提出了一种改进由时频不相交分量组成信号的双线性时频分布的分辨率和可读性的方法。用修正的Xie-Beni聚类有效性指标对熵调整模糊c-均值聚类算法进行拓展将模糊聚类与密度估计相结合,实现了信号时频分量的识别和建模;信号的时频能量混合模型给出了信号分量的数目及其在时频面上所占据的区域。这些信息可以用于分离信号分量,设计适合于每个分离分量的光滑核。仿真结果表明,对于由时频不相交分量组成的信号,本方法可以识别出其中的信号分量,并得到较优的时频分布。 展开更多
关键词 信号分析 目标函数 混合模型 时频能量 模糊C-均值聚类 高斯概率密度函数
在线阅读 下载PDF
使用高斯混合滤波器的机动目标跟踪
16
作者 权宏伟 李俊华 彭冬亮 《电光与控制》 北大核心 2014年第11期24-27,40,共5页
实际目标跟踪过程中,被跟踪目标的状态与类型都是不确定的。使用运动学传感器与属性传感器分别获取的目标状态量测信息与特征量测信息,给出了目标状态与类型不确定性的联合状态类型概率密度函数表示,并推导了线性高斯假设下的系统模型... 实际目标跟踪过程中,被跟踪目标的状态与类型都是不确定的。使用运动学传感器与属性传感器分别获取的目标状态量测信息与特征量测信息,给出了目标状态与类型不确定性的联合状态类型概率密度函数表示,并推导了线性高斯假设下的系统模型为高斯混合模型。根据这一性质,引入高斯混合滤波器,实现了机动目标的有效跟踪。在仿真分析中,通过对比3种算法的跟踪结果,进一步验证了使用高斯混合滤波器在机动目标跟踪过程中的有效性。 展开更多
关键词 目标跟踪 高斯混合模型 概率密度 滤波器
在线阅读 下载PDF
铁道车辆轴箱振动非高斯特征与分布研究
17
作者 李丰润 吴兴文 +3 位作者 赵明花 池茂儒 张平 李牧皛 《噪声与振动控制》 CSCD 北大核心 2024年第4期218-223,277,共7页
以对铁道车辆轴箱振动非高斯特征与分布为对象开展研究。基于列车线路轴箱实测加速度信号,提取由轨道冲击引起的轴箱振动特征非高斯信号。使用多个概率密度函数(Probability Density Function,PDF)模型对实测信号进行拟合,并与实测特征... 以对铁道车辆轴箱振动非高斯特征与分布为对象开展研究。基于列车线路轴箱实测加速度信号,提取由轨道冲击引起的轴箱振动特征非高斯信号。使用多个概率密度函数(Probability Density Function,PDF)模型对实测信号进行拟合,并与实测特征信号的经验分布进行对比,评估各模型对轴箱特征非高斯信号的拟合精度。基于W-H非线性变换模型,建立一种非高斯信号模拟方法。利用模拟信号分析非高斯特征对各模型拟合精度的影响。结果表明:列车在行驶过程中具有非高斯特征,当列车经过轨道焊接接头、道岔与波磨路段时,由于轮轨冲击,非高斯特征明显增大,车轮多边形对信号非高斯特征几乎没有影响;基于W-H模型的非线性变换法,可以在保证模拟信号功率谱与指定功率谱基本一致的情况下,进行不同非高斯特征的信号模拟;高斯混合模型能够对铁道车辆非高斯信号较为准确地拟合;随着模拟非高斯信号峭度与偏度的增大,各模型与经验分布的相对误差也会增大,其中高斯混合模型拟合精度相对较高。 展开更多
关键词 振动与波 高斯随机振动 高斯混合模型 概率密度函数 轨道特征 非线性变换
在线阅读 下载PDF
基于密度峰值多起始中心的融合聚类算法 被引量:8
18
作者 梅婕 魏圆圆 许桃胜 《计算机工程与应用》 CSCD 北大核心 2021年第22期78-85,共8页
经典K-Means算法不能有效处理非球型数据集的聚类问题,且聚类目标数需预先指定。SMCL(Self-adaptive Multiprototype-based Competitive Learning)算法是一种K-Means的改进算法,它引入Multi-Prototypes机制,并将距离相近的Prototypes所... 经典K-Means算法不能有效处理非球型数据集的聚类问题,且聚类目标数需预先指定。SMCL(Self-adaptive Multiprototype-based Competitive Learning)算法是一种K-Means的改进算法,它引入Multi-Prototypes机制,并将距离相近的Prototypes所代表的样本簇融合成聚类簇。在SMCL算法基础上提出DP-SMCL(Density Peak-SMCL)算法,使用密度峰值聚类算法确定初始聚类中心集,借助1-D高斯混合概率密度模型合并以Prototypes为中心的相近子簇来获得精确聚类结果。实验结果表明,DP-SMCL算法可应用于非球型数据集聚类,且能自动确认聚类的目标类别数,相比于K-Means和DBSCAN(Density-Based Spatial Clustering of Applications with Noise)等经典聚类算法能够获得更加准确的聚类结果。同时,与SMCL算法相比,DP-SMCL可以快速完成初始Prototypes的选定,显著提升算法准确率和执行效率。 展开更多
关键词 K-MEANS Multi-Prototypes 聚类 1-d高斯混合概率密度模型 非球型数据集
在线阅读 下载PDF
短期风电功率预测误差及出力波动的概率建模 被引量:7
19
作者 马伟 谢丽蓉 +3 位作者 马兰 叶家豪 卞一帆 杨永辉 《太阳能学报》 EI CAS CSCD 北大核心 2023年第11期361-366,共6页
准确刻画短期风电功率预测误差以及区域风电出力波动特征是解决大规模不确定性能源并网运行难题的基础。为准确表征风电出力波动与预测误差及气象误差的关联关系,建立高斯混合分布概率模型及利用其与观测曲线的误差构造云模型,然后建立... 准确刻画短期风电功率预测误差以及区域风电出力波动特征是解决大规模不确定性能源并网运行难题的基础。为准确表征风电出力波动与预测误差及气象误差的关联关系,建立高斯混合分布概率模型及利用其与观测曲线的误差构造云模型,然后建立基于正态云与混合高斯分布耦合的概率分布模型,最后采用多种概率密度分布模型对冀北地区单风电场功率预测误差、集群风电功率预测误差、气象预测误差以及不同功率波动范围的预测误差和与其对应的气象预测误差的关联关系进行统计分析。算例结果表明,所提模型拟合效果最优,从而验证了基于正态云与混合高斯分布耦合的概率模型的有效性。 展开更多
关键词 风电 模型 混合高斯分布 逆向云模型 概率密度分布
在线阅读 下载PDF
基于星-凸形随机超曲面模型的扩展目标GM-PHD滤波器 被引量:1
20
作者 魏帅 冯新喜 王泉 《弹箭与制导学报》 CSCD 北大核心 2017年第1期147-152,共6页
针对扩展目标联合估计运动状态和目标外形的问题,提出一种基于星-凸形随机超曲面模型的扩展目标高斯混合概率密度滤波算法。该算法利用星-凸随机超曲面模型对量测的扩散程度进行建模,在高斯混合概率假设密度的框架下,通过求解、更新递... 针对扩展目标联合估计运动状态和目标外形的问题,提出一种基于星-凸形随机超曲面模型的扩展目标高斯混合概率密度滤波算法。该算法利用星-凸随机超曲面模型对量测的扩散程度进行建模,在高斯混合概率假设密度的框架下,通过求解、更新递推量测模型下的量测似然、新息等参数来实现对扩展目标的跟踪。仿真实验表明,该算法在保证跟踪有效性和可行性的同时,提高了对扩展目标运动状态和目标外形的估计精度。 展开更多
关键词 星-凸形 随机超曲面模型 扩展目标 高斯混合概率密度
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部