期刊文献+
共找到696篇文章
< 1 2 35 >
每页显示 20 50 100
Convolutional Neural Network-Based Deep Q-Network (CNN-DQN) Resource Management in Cloud Radio Access Network 被引量:2
1
作者 Amjad Iqbal Mau-Luen Tham Yoong Choon Chang 《China Communications》 SCIE CSCD 2022年第10期129-142,共14页
The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a promi... The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a prominent framework in the 5G mobile network to meet the above requirements by deploying low-cost and intelligent multiple distributed antennas known as remote radio heads (RRHs). However, achieving the optimal resource allocation (RA) in CRAN using the traditional approach is still challenging due to the complex structure. In this paper, we introduce the convolutional neural network-based deep Q-network (CNN-DQN) to balance the energy consumption and guarantee the user quality of service (QoS) demand in downlink CRAN. We first formulate the Markov decision process (MDP) for energy efficiency (EE) and build up a 3-layer CNN to capture the environment feature as an input state space. We then use DQN to turn on/off the RRHs dynamically based on the user QoS demand and energy consumption in the CRAN. Finally, we solve the RA problem based on the user constraint and transmit power to guarantee the user QoS demand and maximize the EE with a minimum number of active RRHs. In the end, we conduct the simulation to compare our proposed scheme with nature DQN and the traditional approach. 展开更多
关键词 energy efficiency(EE) markov decision process(MDP) convolutional neural network(cnn) cloud RAN deep Q-network(DQN)
在线阅读 下载PDF
Reconstruction of pile-up events using a one-dimensional convolutional autoencoder for the NEDA detector array
2
作者 J.M.Deltoro G.Jaworski +15 位作者 A.Goasduff V.González A.Gadea M.Palacz J.J.Valiente-Dobón J.Nyberg S.Casans A.E.Navarro-Antón E.Sanchis G.de Angelis A.Boujrad S.Coudert T.Dupasquier S.Ertürk O.Stezowski R.Wadsworth 《Nuclear Science and Techniques》 2025年第2期62-70,共9页
Pulse pile-up is a problem in nuclear spectroscopy and nuclear reaction studies that occurs when two pulses overlap and distort each other,degrading the quality of energy and timing information.Different methods have ... Pulse pile-up is a problem in nuclear spectroscopy and nuclear reaction studies that occurs when two pulses overlap and distort each other,degrading the quality of energy and timing information.Different methods have been used for pile-up rejection,both digital and analogue,but some pile-up events may contain pulses of interest and need to be reconstructed.The paper proposes a new method for reconstructing pile-up events acquired with a neutron detector array(NEDA)using an one-dimensional convolutional autoencoder(1D-CAE).The datasets for training and testing the 1D-CAE are created from data acquired from the NEDA.The new pile-up signal reconstruction method is evaluated from the point of view of how similar the reconstructed signals are to the original ones.Furthermore,it is analysed considering the result of the neutron-gamma discrimination based on charge comparison,comparing the result obtained from original and reconstructed signals. 展开更多
关键词 1D-CAE Autoencoder CAE convolutional neural network(cnn) Neutron detector Neutron-gamma discrimination(NGD) Machine learning Pulse shape discrimination Pile-up pulse
在线阅读 下载PDF
基于VMD-1DCNN-GRU的轴承故障诊断
3
作者 宋金波 刘锦玲 +2 位作者 闫荣喜 王鹏 路敬祎 《吉林大学学报(信息科学版)》 2025年第1期34-42,共9页
针对滚动轴承信号含噪声导致诊断模型训练困难的问题,提出了一种基于变分模态分解(VMD:Variational Mode Decomposition)和深度学习相结合的轴承故障诊断模型。首先,该方法通过VMD对轴承信号进行模态分解,并且通过豪斯多夫距离(HD:Hausd... 针对滚动轴承信号含噪声导致诊断模型训练困难的问题,提出了一种基于变分模态分解(VMD:Variational Mode Decomposition)和深度学习相结合的轴承故障诊断模型。首先,该方法通过VMD对轴承信号进行模态分解,并且通过豪斯多夫距离(HD:Hausdorff Distance)完成去噪,尽可能保留原始信号的特征。其次,将选择的有效信号输入一维卷积神经网络(1DCNN:1D Convolutional Neural Networks)和门控循环单元(GRU:Gate Recurrent Unit)相结合的网络结构(1DCNN-GRU)中完成数据的分类,实现轴承的故障诊断。通过与常见的轴承故障诊断方法比较,所提VMD-1DCNN-GRU模型具有最高的准确性。实验结果验证了该模型对轴承故障有效分类的可行性,具有一定的研究意义。 展开更多
关键词 故障诊断 深度学习 变分模态分解 一维卷积神经网络 门控循环单元
在线阅读 下载PDF
Remaining Useful Life Prediction of Aeroengine Based on Principal Component Analysis and One-Dimensional Convolutional Neural Network 被引量:4
4
作者 LYU Defeng HU Yuwen 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第5期867-875,共9页
In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based... In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based on principal component analysis(PCA)and one-dimensional convolution neural network(1D-CNN)is proposed in this paper.Firstly,multiple state parameters corresponding to massive cycles of aeroengine are collected and brought into PCA for dimensionality reduction,and principal components are extracted for further time series prediction.Secondly,the 1D-CNN model is constructed to directly study the mapping between principal components and RUL.Multiple convolution and pooling operations are applied for deep feature extraction,and the end-to-end RUL prediction of aeroengine can be realized.Experimental results show that the most effective principal component from the multiple state parameters can be obtained by PCA,and the long time series of multiple state parameters can be directly mapped to RUL by 1D-CNN,so as to improve the efficiency and accuracy of RUL prediction.Compared with other traditional models,the proposed method also has lower prediction error and better robustness. 展开更多
关键词 AEROENGINE remaining useful life(RUL) principal component analysis(PCA) one-dimensional convolution neural network(1D-cnn) time series prediction state parameters
在线阅读 下载PDF
An Improved Convolutional Neural Network Based Indoor Localization by Using Jenks Natural Breaks Algorithm 被引量:3
5
作者 Chengjie Hou Yaqin Xie Zhizhong Zhang 《China Communications》 SCIE CSCD 2022年第4期291-301,共11页
With the rapid growth of the demand for indoor location-based services(LBS), Wi-Fi received signal strength(RSS) fingerprints database has attracted significant attention because it is easy to obtain. The fingerprints... With the rapid growth of the demand for indoor location-based services(LBS), Wi-Fi received signal strength(RSS) fingerprints database has attracted significant attention because it is easy to obtain. The fingerprints algorithm based on convolution neural network(CNN) is often used to improve indoor localization accuracy. However, the number of reference points used for position estimation has significant effects on the positioning accuracy. Meanwhile, it is always selected arbitraily without any guiding standards. As a result, a novel location estimation method based on Jenks natural breaks algorithm(JNBA), which can adaptively choose more reasonable reference points, is proposed in this paper. The output of CNN is processed by JNBA, which can select the number of reference points according to different environments. Then, the location is estimated by weighted K-nearest neighbors(WKNN). Experimental results show that the proposed method has higher positioning accuracy without sacrificing more time cost than the existing indoor localization methods based on CNN. 展开更多
关键词 indoor localization convolution neural network(cnn) Wi-Fi fingerprints Jenks natural breaks
在线阅读 下载PDF
Detection of K in soil using time-resolved laser-induced breakdown spectroscopy based on convolutional neural networks 被引量:1
6
作者 Chengxu LU Bo WANG +3 位作者 Xunpeng JIANG Junning ZHANG Kang NIU Yanwei YUAN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2019年第3期108-113,共6页
One of the technical bottlenecks of traditional laser-induced breakdown spectroscopy(LIBS) is the difficulty in quantitative detection caused by the matrix effect. To troubleshoot this problem,this paper investigated ... One of the technical bottlenecks of traditional laser-induced breakdown spectroscopy(LIBS) is the difficulty in quantitative detection caused by the matrix effect. To troubleshoot this problem,this paper investigated a combination of time-resolved LIBS and convolutional neural networks(CNNs) to improve K determination in soil. The time-resolved LIBS contained the information of both wavelength and time dimension. The spectra of wavelength dimension showed the characteristic emission lines of elements, and those of time dimension presented the plasma decay trend. The one-dimensional data of LIBS intensity from the emission line at 766.49 nm were extracted and correlated with the K concentration, showing a poor correlation of R_c^2?=?0.0967, which is caused by the matrix effect of heterogeneous soil. For the wavelength dimension, the two-dimensional data of traditional integrated LIBS were extracted and analyzed by an artificial neural network(ANN), showing R_v^2?=?0.6318 and the root mean square error of validation(RMSEV)?=?0.6234. For the time dimension, the two-dimensional data of time-decay LIBS were extracted and analyzed by ANN, showing R_v^2?=?0.7366 and RMSEV?=?0.7855.These higher determination coefficients reveal that both the non-K emission lines of wavelength dimension and the spectral decay of time dimension could assist in quantitative detection of K.However, due to limited calibration samples, the two-dimensional models presented over-fitting.The three-dimensional data of time-resolved LIBS were analyzed by CNNs, which extracted and integrated the information of both the wavelength and time dimension, showing the R_v^2?=?0.9968 and RMSEV?=?0.0785. CNN analysis of time-resolved LIBS is capable of improving the determination of K in soil. 展开更多
关键词 quantitative DETECTION potassium(K) SOIL TIME-RESOLVED LASER-INDUCED breakdown spectroscopy(LIBS) convolutional neural networks(cnns)
在线阅读 下载PDF
Determination of quantum toric error correction code threshold using convolutional neural network decoders 被引量:1
7
作者 Hao-Wen Wang Yun-Jia Xue +2 位作者 Yu-Lin Ma Nan Hua Hong-Yang Ma 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第1期136-142,共7页
Quantum error correction technology is an important solution to solve the noise interference generated during the operation of quantum computers.In order to find the best syndrome of the stabilizer code in quantum err... Quantum error correction technology is an important solution to solve the noise interference generated during the operation of quantum computers.In order to find the best syndrome of the stabilizer code in quantum error correction,we need to find a fast and close to the optimal threshold decoder.In this work,we build a convolutional neural network(CNN)decoder to correct errors in the toric code based on the system research of machine learning.We analyze and optimize various conditions that affect CNN,and use the RestNet network architecture to reduce the running time.It is shortened by 30%-40%,and we finally design an optimized algorithm for CNN decoder.In this way,the threshold accuracy of the neural network decoder is made to reach 10.8%,which is closer to the optimal threshold of about 11%.The previous threshold of 8.9%-10.3%has been slightly improved,and there is no need to verify the basic noise. 展开更多
关键词 quantum error correction toric code convolutional neural network(cnn)decoder
在线阅读 下载PDF
Object Recognition Algorithm Based on an Improved Convolutional Neural Network 被引量:1
8
作者 Zheyi Fan Yu Song Wei Li 《Journal of Beijing Institute of Technology》 EI CAS 2020年第2期139-145,共7页
In order to accomplish the task of object recognition in natural scenes,a new object recognition algorithm based on an improved convolutional neural network(CNN)is proposed.First,candidate object windows are extracted... In order to accomplish the task of object recognition in natural scenes,a new object recognition algorithm based on an improved convolutional neural network(CNN)is proposed.First,candidate object windows are extracted from the original image.Then,candidate object windows are input into the improved CNN model to obtain deep features.Finally,the deep features are input into the Softmax and the confidence scores of classes are obtained.The candidate object window with the highest confidence score is selected as the object recognition result.Based on AlexNet,Inception V1 is introduced into the improved CNN and the fully connected layer is replaced by the average pooling layer,which widens the network and deepens the network at the same time.Experimental results show that the improved object recognition algorithm can obtain better recognition results in multiple natural scene images,and has a higher degree of accuracy than the classical algorithms in the field of object recognition. 展开更多
关键词 object recognition selective search algorithm improved convolutional neural network(cnn)
在线阅读 下载PDF
Quantitative algorithm for airborne gamma spectrum of large sample based on improved shuffled frog leaping-particle swarm optimization convolutional neural network 被引量:1
9
作者 Fei Li Xiao-Fei Huang +5 位作者 Yue-Lu Chen Bing-Hai Li Tang Wang Feng Cheng Guo-Qiang Zeng Mu-Hao Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第7期242-252,共11页
In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamm... In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamma-ray measurements and improve computational efficiency,an improved shuffled frog leaping algorithm-particle swarm optimization convolutional neural network(SFLA-PSO CNN)for large-sample quantitative analysis of airborne gamma-ray spectra is proposed herein.This method was used to train the weight of the neural network,optimize the structure of the network,delete redundant connections,and enable the neural network to acquire the capability of quantitative spectrum processing.In full-spectrum data processing,this method can perform the functions of energy spectrum peak searching and peak area calculations.After network training,the mean SNR and RMSE of the spectral lines were 31.27 and 2.75,respectively,satisfying the demand for noise reduction.To test the processing ability of the algorithm in large samples of airborne gamma spectra,this study considered the measured data from the Saihangaobi survey area as an example to conduct data spectral analysis.The results show that calculation of the single-peak area takes only 0.13~0.15 ms,and the average relative errors of the peak area in the U,Th,and K spectra are 3.11,9.50,and 6.18%,indicating the high processing efficiency and accuracy of this algorithm.The performance of the model can be further improved by optimizing related parameters,but it can already meet the requirements of practical engineering measurement.This study provides a new idea for the full-spectrum processing of airborne gamma rays. 展开更多
关键词 Large sample Airborne gamma spectrum(AGS) Shuffled frog leaping algorithm(SFLA) Particle swarm optimization(PSO) convolutional neural network(cnn)
在线阅读 下载PDF
基于CNN模型的地震数据噪声压制性能对比研究
10
作者 张光德 张怀榜 +3 位作者 赵金泉 尤加春 魏俊廷 杨德宽 《石油物探》 北大核心 2025年第2期232-246,共15页
地震噪声的压制是地震勘探中地震数据处理的重要研究内容之一。准确地压制地震噪声和提取地震信号中的有效信息是地震勘探和地震监测的一项关键步骤。传统的地震噪声压制方法存在一些不足之处,如灵活性不足、难以处理复杂噪声、有效信... 地震噪声的压制是地震勘探中地震数据处理的重要研究内容之一。准确地压制地震噪声和提取地震信号中的有效信息是地震勘探和地震监测的一项关键步骤。传统的地震噪声压制方法存在一些不足之处,如灵活性不足、难以处理复杂噪声、有效信息损失以及依赖人工提取特征等局限性。为克服传统方法的不足,采用时频域变换并结合深度学习方法进行地震噪声压制,并验证其应用效果。通过构建5个神经网络模型(FCN、Unet、CBDNet、SwinUnet以及TransUnet)对经过时频变换的地震信号进行噪声压制。为了定量评估实验方法的去噪性能,引入了峰值信噪比(PSNR)、结构相似性指数(SSIM)和均方根误差(RMSE)3个指标,比较不同方法的噪声压制性能。数值实验结果表明,基于时频变换的卷积神经网络(CNN)方法对常见的地震噪声类型(包括随机噪声、海洋涌浪噪声、陆地面波噪声)具有较好的噪声压制效果,能够提高地震数据的信噪比。而Transformer模块的引入可进一步提高对上述3种常见地震数据噪声类型的压制效果,进一步提升CNN模型的去噪性能。尽管该方法在数值实验中取得了较好的应用效果,但仍有进一步优化的空间可供探索,比如改进网络结构以适应更复杂的地震信号,并探索与其他先进技术结合,以提升地震噪声压制性能。 展开更多
关键词 地震噪声压制 深度学习 卷积神经网络(cnn) 时频变换 TRANSFORMER
在线阅读 下载PDF
基于CNN-Swin Transformer Network的LPI雷达信号识别 被引量:1
11
作者 苏琮智 杨承志 +2 位作者 邴雨晨 吴宏超 邓力洪 《现代雷达》 CSCD 北大核心 2024年第3期59-65,共7页
针对在低信噪比(SNR)条件下,低截获概率雷达信号调制方式识别准确率低的问题,提出一种基于Transformer和卷积神经网络(CNN)的雷达信号识别方法。首先,引入Swin Transformer模型并在模型前端设计CNN特征提取层构建了CNN+Swin Transforme... 针对在低信噪比(SNR)条件下,低截获概率雷达信号调制方式识别准确率低的问题,提出一种基于Transformer和卷积神经网络(CNN)的雷达信号识别方法。首先,引入Swin Transformer模型并在模型前端设计CNN特征提取层构建了CNN+Swin Transformer网络(CSTN),然后利用时频分析获取雷达信号的时频特征,对图像进行预处理后输入CSTN模型进行训练,由网络的底部到顶部不断提取图像更丰富的语义信息,最后通过Softmax分类器对六类不同调制方式信号进行分类识别。仿真实验表明:在SNR为-18 dB时,该方法对六类典型雷达信号的平均识别率达到了94.26%,证明了所提方法的可行性。 展开更多
关键词 低截获概率雷达 信号调制方式识别 Swin Transformer网络 卷积神经网络 时频分析
在线阅读 下载PDF
GWO优化CNN-BiLSTM-Attenion的轴承剩余寿命预测方法 被引量:1
12
作者 李敬一 苏翔 《振动与冲击》 北大核心 2025年第2期321-332,共12页
滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来... 滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来提高模型对重要特征的关注程度,对于长时间序列容易丢失重要信息。另外,神经网络中隐藏层神经元个数、学习率以及正则化参数等超参数还需要依靠人工经验设置。为了解决上述问题,提出基于灰狼优化(grey wolf optimizer, GWO)算法、优化集合CNN、双向长短期记忆(bidirectional long short term memory, BiLSTM)网络和注意力机制(Attention)轴承剩余使用寿命预测方法。首先,从原始振动信号中提取时域、频域以及时频域特征指标构建可选特征集;然后,通过构建考虑特征相关性、鲁棒性和单调性的综合评价指标筛选出高于设定阈值的轴承退化敏感特征集,作为预测模型的输入;最后,将预测值和真实值的均方误差作为GWO算法的适应度函数,优化预测模型获得最优隐藏层神经元个数、学习率和正则化参数,利用优化后模型进行剩余使用寿命预测,并在公开数据集上进行验证。结果表明,所提方法可在非经验指导下获得最优的超参数组合,优化后的预测模型与未进行优化模型相比,平均绝对误差与均方根误差分别降低了28.8%和24.3%。 展开更多
关键词 灰狼优化(GWO)算法 卷积神经网络(cnn) 双向长短期记忆(BiLSTM)网络 自注意力机制 剩余使用寿命预测
在线阅读 下载PDF
基于CNN-LSTM的序列图像空间目标识别方法
13
作者 齐思宇 赵慧洁 +3 位作者 姜宏志 李旭东 王思航 郭琦 《上海航天(中英文)》 2025年第2期186-193,共8页
针对现有的基于序列图像的空间目标识别方法难以在特征层级进行融合的问题,提出了将深度卷积网络(CNN)与循环神经网络(RNN)相结合的方法,并对网络模型加以改进。针对单幅图像如何作为序列特征输入的问题,对卷积网络的末端进行修改,将特... 针对现有的基于序列图像的空间目标识别方法难以在特征层级进行融合的问题,提出了将深度卷积网络(CNN)与循环神经网络(RNN)相结合的方法,并对网络模型加以改进。针对单幅图像如何作为序列特征输入的问题,对卷积网络的末端进行修改,将特征图作为序列特征输入;针对序列特征如何映射到目标类别的问题,对长短期记忆网络(LSTM)网络末端进行修改,增加了新的全连接层,得到输出类别。使用0.001~0.006高斯噪声水平训练,以0.007~0.010作为测试集,识别平均准确率(mAP)由90.7%提升至99.16%;训练集与测试集在不同姿态情况下,mAP为94.71%。网络参数量仅为283.0 M。现有的仅在结果层级融合进行识别的问题得到了有效解决。 展开更多
关键词 目标识别 序列图像 空间目标 卷积网络(cnn) 循环神经网络(RNN)
在线阅读 下载PDF
融合特征下的双流CNN的制动蠕动颤振评价
14
作者 李阳 靳畅 +1 位作者 李天舒 顾鼎元 《振动与冲击》 北大核心 2025年第1期134-142,189,共10页
针对车辆蠕动颤振主观评价方法效率低、耗时长、测试流程复杂的问题,研究了蠕动颤振信号的时序特征和时频域特征提取方法,将2D-CNN的空间处理能力与1D-CNN的时序处理能力相结合,提出一种融合特征下的双流卷积神经网络的蠕动颤振评价方... 针对车辆蠕动颤振主观评价方法效率低、耗时长、测试流程复杂的问题,研究了蠕动颤振信号的时序特征和时频域特征提取方法,将2D-CNN的空间处理能力与1D-CNN的时序处理能力相结合,提出一种融合特征下的双流卷积神经网络的蠕动颤振评价方法。一条支路的输入为经过变分模态分解提取的时间序列特征,另一条支路的输入为经过快速傅里叶变换提取的图像特征,将一维时序特征与高维图像特征融合,训练模型进行评分。该方法通过融合不同模态的信息,充分捕捉蠕动颤振的局部波形特征和空间纹理特征。结果表明,融合两种特征的评分模型的八分类准确率达87.13%,验证了特征融合方法在蠕动颤振评价上的有效性。 展开更多
关键词 卷积神经网络(cnn) 融合特征 变分模态分解(VMD) 蠕动颤振
在线阅读 下载PDF
基于多尺度CNN与双阶段注意力机制的轴承工况域泛化故障诊断
15
作者 乔卉卉 赵二贤 +3 位作者 郝如江 刘婕 刘帅 王勇超 《振动与冲击》 北大核心 2025年第2期267-278,共12页
变工况条件下,基于深度学习的列车轮对轴承故障诊断模型的训练集与测试集通常来自不同的工况,不同工况振动信号数据分布差异引起的领域漂移问题导致模型准确率降低。基于域适应的变工况轴承故障诊断方法需要获取目标工况域的样本数据参... 变工况条件下,基于深度学习的列车轮对轴承故障诊断模型的训练集与测试集通常来自不同的工况,不同工况振动信号数据分布差异引起的领域漂移问题导致模型准确率降低。基于域适应的变工况轴承故障诊断方法需要获取目标工况域的样本数据参与训练,这在工程实际中难以实现,因此无法实现未知工况的轴承故障诊断。针对以上问题,提出了一种基于多尺度卷积神经网络与双阶段注意力机制网络(two-stage attention multiscale convolutional network model, TSAMCNN)模型的轴承工况域泛化故障诊断方法,其中多尺度特征提取模块从多个尺度上提取时域振动信号中更丰富的故障信息;然后,双阶段注意力模块从通道和空间两个维度自适应地增强故障敏感特征并抑制工况敏感特征和无用特征;最终,提取工况域不变故障特征,从而实现工况域泛化轴承故障诊断。通过变转速和变负载列车轮对轴承故障诊断试验,证明了TSAMCNN模型可提高变工况条件下轴承故障诊断的准确率、抗噪性能和工况域泛化能力。此外,对双阶段注意力机制的权重向量和模型各模块提取的特征进行可视化分析,提高了模型可解释性。 展开更多
关键词 列车轮对轴承 工况域泛化故障诊断 卷积神经网络(cnn) 多尺度特征提取 注意力机制
在线阅读 下载PDF
CNN在输配电网络故障诊断中的应用
16
作者 姜淑娅 《通信电源技术》 2025年第5期225-227,共3页
为提升输配电网络运行质量,提高故障识别的智能化水平,以卷积神经网络(Convolutional Neural Network,CNN)为例进行研究。通过构建基于CNN的输配电网络故障识别模型进行故障定位与分类,借助仿真试验对比CNN模型与支持向量机(SupportVect... 为提升输配电网络运行质量,提高故障识别的智能化水平,以卷积神经网络(Convolutional Neural Network,CNN)为例进行研究。通过构建基于CNN的输配电网络故障识别模型进行故障定位与分类,借助仿真试验对比CNN模型与支持向量机(SupportVectorMachine,SVM)识别模型、决策树识别模型,验证所提模型的效果。结果表明,CNN方法在精度、召回率、实时性等方面均优于其他两种方法,能够有效提高针对输配电网络的故障识别准确性与效率,为电力系统的智能化运维提供重要参考。 展开更多
关键词 输配电 网络故障 卷积神经网络(cnn)
在线阅读 下载PDF
基于CNN-SVM卷积神经网络煤矿机电设备安全评价方法
17
作者 兰德兴 《中国矿山工程》 2025年第2期15-19,共5页
煤矿机电设备是直接影响煤炭产出效率的重要因素,为准确预测煤矿机电设备安全评价等级,提出了三个主要影响因素,分别为企业组织管理因素、煤矿井下环境因素与机电设备状态因素,并建立了四个安全评价等级指标,构建了CNN-SVM模型对具有多... 煤矿机电设备是直接影响煤炭产出效率的重要因素,为准确预测煤矿机电设备安全评价等级,提出了三个主要影响因素,分别为企业组织管理因素、煤矿井下环境因素与机电设备状态因素,并建立了四个安全评价等级指标,构建了CNN-SVM模型对具有多向量的煤矿机电设备因素特征值进行分类预测。结果表明:CNN-SVM模型与CNN-GRU模型、CNN-BiLSTM模型的训练及预测结果相似,均为安全等级Ⅲ的预测准确率略低,但该模型的安全等级Ⅲ的预测准确率要高于上述两种模型,特别是在测试集预测结果中,安全等级Ⅲ的预测准确率为96.3%,远低于CNN-GRU模型、CNN-BiLSTM模型的77.8%、88.9%,CNN-SVM模型对煤矿机电安全评价等级的整体预测准确率要高于其他两种模型,模型预测结果与实际评价结果基本吻合。 展开更多
关键词 cnn-SVM卷积神经网络 煤矿机电设备 安全评价
在线阅读 下载PDF
基于GAF-CNN的船用空压机故障噪声诊断方法
18
作者 董明 崔德馨 李祥林 《船舶》 2025年第1期106-114,共9页
船用空压机工作环境恶劣,内外激励源众多,采集的噪声信号具有强烈的时变性,会导致故障诊断精度较低,难以实现船用空压机各类故障的有效识别。为此,该文提出将格拉姆角场(Gramian angular field,GAF)编码和卷积神经网络(convolutional ne... 船用空压机工作环境恶劣,内外激励源众多,采集的噪声信号具有强烈的时变性,会导致故障诊断精度较低,难以实现船用空压机各类故障的有效识别。为此,该文提出将格拉姆角场(Gramian angular field,GAF)编码和卷积神经网络(convolutional neural network,CNN)法相结合的故障诊断方法。首先,阐述了GAF和CNN的基本原理、方法和实施步骤;然后,通过试验模拟了船用空压机的各类故障,并采集相应噪声信号,再利用GAF将一维时域信号转换为二维图像,将特征信息映射为二维图像的颜色、点等纹理特征;最后,将二维图像输入至CNN中进行特征提取和故障诊断。试验结果表明:在保证运行效率的前提下,该方法能够有效识别船用空压机的各类故障,诊断精度达到99.2%,优于其他算法,可为船舶故障智能诊断的应用提供了新途径和新思路。 展开更多
关键词 船用空压机 噪声分析 格拉姆角场 卷积神经网络 故障诊断
在线阅读 下载PDF
融合CNN与SA的电网数据攻击检测优化方案设计
19
作者 张亚菇 高震 《通信电源技术》 2025年第9期52-54,206,共4页
随着智能电网和电力系统的广泛应用,电网安全问题愈发引起关注。电网数据攻击不仅可能导致电网运行异常,而且可能影响电力系统的稳定性和安全性。在传统方案基础上,通过引入卷积神经网络(Convolutional Neural Networks,CNN)与自注意力(... 随着智能电网和电力系统的广泛应用,电网安全问题愈发引起关注。电网数据攻击不仅可能导致电网运行异常,而且可能影响电力系统的稳定性和安全性。在传统方案基础上,通过引入卷积神经网络(Convolutional Neural Networks,CNN)与自注意力(Self-Attention,SA)机制来提高电网数据攻击检测能力。实验结果表明,优化方案能够在多节点协同攻击场景下完成异常识别,减少假阳性和漏报率,提升模型的准确性和健壮性。 展开更多
关键词 电网数据攻击检测 卷积神经网络(cnn) 自注意力(SA)机制 检测优化
在线阅读 下载PDF
基于小波变换和CNN-BiLSTM的电力电缆故障定位
20
作者 任晶晶 王耀辉 《通信电源技术》 2025年第7期240-242,共3页
文章提出一种基于小波变换和卷积神经网络-双向长短期记忆(Convolutional Neural Network-Bidirectional Long Short Term Memory,CNN-BiLSTM)的电力电缆故障定位算法,结合小波变换的时频局部化特性和CNN与BiLSTM的深度学习能力,以提升... 文章提出一种基于小波变换和卷积神经网络-双向长短期记忆(Convolutional Neural Network-Bidirectional Long Short Term Memory,CNN-BiLSTM)的电力电缆故障定位算法,结合小波变换的时频局部化特性和CNN与BiLSTM的深度学习能力,以提升故障定位的精准性。为验证提出算法的有效性,将True、BiLSTM、极值域均值模式分解(Extremum field Mean Mode Decomposition,EMMD)+小波变换算法与本文算法进行对比实验分析。实验结果表明,基于小波变换和CNN-BiLSTM的电力电缆故障定位算法能够将定位误差控制在0.02 km以内,显著提高了故障定位的精度。 展开更多
关键词 小波变换 卷积神经网络(cnn) 双向长短期记忆(BiLSTM) 电力电缆故障定位
在线阅读 下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部