Conductor materials with good mechanical performance as well as high electrical and thermal conductivities are particularly important to break through the current bottle-neck limit(~ 100 T) of pulsed magnets. Here, we...Conductor materials with good mechanical performance as well as high electrical and thermal conductivities are particularly important to break through the current bottle-neck limit(~ 100 T) of pulsed magnets. Here, we perform systematic studies on the elastic properties of the Cu–6wt% Ag alloy wire, which is a promising candidate material for the new-generation pulsed magnets, by employing two independent ultrasonic techniques, i.e., resonant ultrasound spectroscopy(RUS) and ultrasound pulse-echo experiments. Our RUS measurements manifest that the elastic properties of the Cu–6wt% Ag alloy wires can be improved by an electroplastic drawing procedure as compared with the conventional cold drawing. We also take this opportunity to test the availability of our newly-built ultrasound pulse-echo facility at the Wuhan National High Magnetic Field Center(WHMFC, China), and the results suggest that the elastic performance of the electroplastically-drawn Cu–6wt% Ag alloy wire remains excellent without anomalous softening under extreme conditions,e.g., in ultra-high magnetic field up to 50 T and nitrogen or helium cryogenic liquids.展开更多
Precise transverse emittance assessment in electron beams is crucial for advancing high-brightness beam injectors.As opposed to intricate methodologies that use specialized devices,quadrupole focusing strength scannin...Precise transverse emittance assessment in electron beams is crucial for advancing high-brightness beam injectors.As opposed to intricate methodologies that use specialized devices,quadrupole focusing strength scanning(Q-scanning)techniques offer notable advantages for various injectors owing to their inherent convenience and cost-effectiveness.However,their stringent approximation conditions lead to inevitable errors in practical operation,thereby limiting their widespread application.This study addressed these challenges by revisiting the analytical derivation procedure and investigating the effects of the underlying approximation conditions.Preliminary corrections were explored through a combination of data processing analysis and numerical simulations.Furthermore,based on theoretical derivations,virtual measurements using beam dynamics calculations were employed to evaluate the correction reliability.Subsequent experimental validations were performed at the Huazhong University of Science and Technology injector to verify the effectiveness of the proposed compensation method.Both the virtual and experimental results confirm the feasibility and reliability of the enhanced Q-scanning-based diagnosis for transverse emittance in typical beam injectors operating under common conditions.Through the integration of these corrections and compensations,enhanced Q-scanning-based techniques emerge as promising alternatives to traditional emittance diagnosis methods.展开更多
Manipulating and braiding Majorana zero modes(MZM)are a critical step toward realizing topological quantum computing.The primary challenge is controlling the vortex,which hosts the MZM,within a superconducting film in...Manipulating and braiding Majorana zero modes(MZM)are a critical step toward realizing topological quantum computing.The primary challenge is controlling the vortex,which hosts the MZM,within a superconducting film in a spatially precise manner.To address this,we developed a magnetic force-based vortex control technology using the STM system with a self-designed four-electrode piezo-scanner tube and investigated vortex manipulation on the NbSe_(2) superconducting film.We employed ferromagnetic tips to control the movement of vortex array induced by the tip's remanent magnetism.A magnetic core solenoid device was integrated into the STM system and a strong magnetic tip demagnetization technique was developed,providing a viable technical solution for further enabling single vortex manipulation.展开更多
In recent years,studies focusing on the conversion of renewable lignin-derived oxygenates(LDOs)have emphasized their potential as alternatives to fossil-based products.However,LDOs,existing as complex aromatic mixture...In recent years,studies focusing on the conversion of renewable lignin-derived oxygenates(LDOs)have emphasized their potential as alternatives to fossil-based products.However,LDOs,existing as complex aromatic mixtures with diverse oxygen-containing functional groups,pose a challenge as they cannot be easily separated via distillation for direct utilization.A promising solution to this challenge lies in the efficient removal of oxygen-containing functional groups from LDOs through hydrodeoxygenation(HDO),aiming to yield biomass products with singular components.However,the high dissociation energy of the carbon-oxygen bond,coupled with its similarity to the hydrogenation energy of the benzene ring,creates a competition between deoxygenation and benzene ring hydrogenation.Considering hydrogen consumption and lignin properties,the preference is directed towards generating aromatic hydrocarbons rather than saturated components.Thus,the goal is to selectively remove oxygen-containing functional groups while preserving the benzene ring structure.Studies on LDOs conversion have indicated that the design of active components and optimization of reaction conditions play pivotal roles in achieving selective deoxygenation,but a summary of the correlation between these factors and the reaction mechanism is lacking.This review addresses this gap in knowledge by firstly summarizing the various reaction pathways for HDO of LDOs.It explores the impact of catalyst design strategies,including morphology modulation,elemental doping,and surface modification,on the adsorption-desorption dynamics between reactants and catalysts.Secondly,we delve into the application of advanced techniques such as spectroscopic techniques and computational modeling,aiding in uncovering the true active sites in HDO reactions and understanding the interaction of reactive reactants with catalyst surface-interfaces.Additionally,fundamental insights into selective deoxygenation obtained through these techniques are highlighted.Finally,we outline the challenges that lie ahead in the design of highly active and selective HDO catalysts.These challenges include the development of detection tools for reactive species with high activity at low concentrations,the study of reaction medium-catalyst interactions,and the development of theoretical models that more closely approximate real reaction situations.Addressing these challenges will pave the way for the development of efficient and selective HDO catalysts,thus advancing the field of renewable LDOs conversion.展开更多
Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex str...Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex structural optimization problems, if the structural reanalysis technique is not adopted, the more the number of finite element analysis (FEA) is, the more the consuming time is. In the conventional structural optimization the number of FEA can be reduced by the structural reanalysis technique based on the approximation techniques and sensitivity analysis. With these techniques, this paper provides a new approximation model-segment approximation model, adopted for the GA application. This segment approximation model can decrease the number of FEA and increase the convergence rate of GA. So it can apparently decrease the computation time of GA. Two examples demonstrate the availability of the new segment approximation model.展开更多
The melt-spinning technique offers an opportunity for tailoring magnetic properties by controlling the structures and microstructures in both single-phase and composite magnets.This review first broadly discusses the ...The melt-spinning technique offers an opportunity for tailoring magnetic properties by controlling the structures and microstructures in both single-phase and composite magnets.This review first broadly discusses the principle of cooling control,amorphization,crystallization,annealing,and consolidation of the melt-spun ribbons.The phase,microstructure,and magnetic properties of popular single-phase nanocrystalline magnets are reviewed,followed by the nanocomposite magnets consisting of magnetically hard and soft phases.The precipitation-hardened magnetic materials prepared by melt spinning are also discussed.Finally,the role of intergrain exchange coupling,thermal fluctuation,and reversible/irreversible magnetization processes are discussed and correlated to the magnetic phenomena in both single-phase and nanocomposite magnets.展开更多
In this paper, we focus on the robust adaptive synchronization between two coupled chaotic neural networks with all the parameters unknown and time-varying delay. In order to increase the robustness of the two coupled...In this paper, we focus on the robust adaptive synchronization between two coupled chaotic neural networks with all the parameters unknown and time-varying delay. In order to increase the robustness of the two coupled neural networks, the key idea is that a sliding-mode-type controller is employed. Moreover, without the estimate values of the network unknown parameters taken as an updating object, a new updating object is introduced in the constructing of controller. Using the proposed controller, without any requirements for the boundedness, monotonicity and differentiability of activation functions, and symmetry of connections, the two coupled chaotic neural networks can achieve global robust synchronization no matter what their initial states are. Finally, the numerical simulation validates the effectiveness and feasibility of the proposed technique.展开更多
Rapid developments in quantum information processing have been made, and remarkable achievements have been obtained in recent years, both in theory and experiments. Coherent control of nuclear spin dynamics is a power...Rapid developments in quantum information processing have been made, and remarkable achievements have been obtained in recent years, both in theory and experiments. Coherent control of nuclear spin dynamics is a powerful tool for the experimental implementation of quantum schemes in liquid and solid nuclear magnetic resonance (NMR) system, especially in liquid-state NMR. Compared with other quantum information processing systems, the NMR platform has the advantages such as the long coherence time, the precise manipulation, and well-developed quantum control techniques, which make it possible to accurately control a quantum system with up to 12-qubits. Extensive applications of liquid-state NMR spectroscopy in quantum information processing such as quantum communication, quantum computing, and quantum simulation have been thoroughly studied over half a century. This article introduces the general principles of NMR quantum information processing, and reviews the new-developed techniques. The review will also include the recent achievements of the experimental realization of quantum algorithms for machine learning, quantum simulations for high energy physics, and topological order in NMR. We also discuss the limitation and prospect of liquid-state NMR spectroscopy and the solid-state NMR systems as quantum computing in the article.展开更多
Based on the transmitting theory of "smoke ring effect", the transient electromagnetism technique was used in coal mines to detect abnormal areas of aquiferous structures in both roofs and floors of coal sea...Based on the transmitting theory of "smoke ring effect", the transient electromagnetism technique was used in coal mines to detect abnormal areas of aquiferous structures in both roofs and floors of coal seams and in front of excavated roadways. Survey devices, working methods and techniques as well as data processing and interpretation are discussed systematically. In addition, the direction of mini-wireframe emission electromagnetic wave of the full space transient electromagnetism technique was verified by an underground borehole for water detection and drainage. The result indicates that this technique can detect both horizontal and vertical development rules of abnormal water bodies to a certain depth below the floor of coal seams and can also detect the abnormal, low resistance water bodies within a certain distance of roofs. Furthermore, it can detect such abnormal bodies in ahead of the excavated roadway front. Limited by the underground environment, the full space transient electromagnetism technique can detect to a depth of only 120 m or so.展开更多
Even though various wireless Net- work Access Technologies (NATs) with dif- ferent specifications and applications have been developed in the recent years, no single wireless technology alone can satisfy the any- ti...Even though various wireless Net- work Access Technologies (NATs) with dif- ferent specifications and applications have been developed in the recent years, no single wireless technology alone can satisfy the any- time, anywhere, and any service wire- less-access needs of mobile users. A real seamless wireless mobile environment is only realized by considering vertical and horizontal handoffs together. One of the major design issues in heterogeneous wireless networks is the support of Vertical Handoff (VHO). VHO occurs when a multi-interface enabled mobile terminal changes its Point of Attachment (PoA) from one type of wireless access technology to another, while maintaining an active session. In this paper we present a novel multi-criteria VHO algorithm, which chooses the target NAT based on several factors such as user preferences, system parameters, and traf- tic-types with varying Quality of Service (QoS) requirements. Two modules i.e., VHO Neces- sity Estimation (VHONE) module and target NAT selection module, are designed. Both modules utilize several "weighted" users' and system's parameters. To improve the robust- ness of the proposed algorithm, the weighting system is designed based on the concept of fuzzy linguistic variables.展开更多
The global stability problem of Takagi-Sugeno(T-S) fuzzy Hopfield neural networks(FHNNs) with time delays is investigated.Novel LMI-based stability criteria are obtained by using Lyapunov functional theory to guar...The global stability problem of Takagi-Sugeno(T-S) fuzzy Hopfield neural networks(FHNNs) with time delays is investigated.Novel LMI-based stability criteria are obtained by using Lyapunov functional theory to guarantee the asymptotic stability of the FHNNs with less conservatism.Firstly,using both Finsler's lemma and an improved homogeneous matrix polynomial technique,and applying an affine parameter-dependent Lyapunov-Krasovskii functional,we obtain the convergent LMI-based stability criteria.Algebraic properties of the fuzzy membership functions in the unit simplex are considered in the process of stability analysis via the homogeneous matrix polynomials technique.Secondly,to further reduce the conservatism,a new right-hand-side slack variables introducing technique is also proposed in terms of LMIs,which is suitable to the homogeneous matrix polynomials setting.Finally,two illustrative examples are given to show the efficiency of the proposed approaches.展开更多
Rechargeable battery cycling performance and related safety have been persistent concerns.It is crucial to decipher the capacity fading induced by electrode material failure via a range of techniques.Among these,synch...Rechargeable battery cycling performance and related safety have been persistent concerns.It is crucial to decipher the capacity fading induced by electrode material failure via a range of techniques.Among these,synchrotron-based X-ray techniques with high flux and brightness play a key role in understanding degradation mechanisms.In this comprehensive review,we summarize recent advancements in degra-dation modes and mechanisms that were revealed by synchrotron X-ray methodologies.Subsequently,an overview of X-ray absorption spectroscopy and X-ray scattering techniques is introduced for charac-terizing failure phenomena at local coordination atomic environment and long-range order crystal struc-ture scale,respectively.At last,we envision the future of exploring material failure mechanism.展开更多
Manipulating the expression of synaptic plasticity of neuromorphic devices provides fascinating opportunities to develop hardware platforms for artifi-cial intelligence.However,great efforts have been devoted to explo...Manipulating the expression of synaptic plasticity of neuromorphic devices provides fascinating opportunities to develop hardware platforms for artifi-cial intelligence.However,great efforts have been devoted to exploring biomimetic mechanisms of plasticity simulation in the last few years.Recent progress in various plasticity modulation techniques has pushed the research of synaptic electronics from static plasticity simulation to dynamic plasticity modulation,improving the accuracy of neuromorphic computing and providing strategies for implementing neuromorphic sensing functions.Herein,several fascinating strategies for synap-tic plasticity modulation through chemical techniques,device structure design,and physical signal sensing are reviewed.For chemical techniques,the underly-ing mechanisms for the modification of functional materials were clarified and its effect on the expression of synaptic plasticity was also highlighted.Based on device structure design,the reconfigurable operation of neuromorphic devices was well demonstrated to achieve programmable neuromorphic functions.Besides,integrating the sensory units with neuromorphic processing circuits paved a new way to achieve human-like intelligent perception under the modulation of physical signals such as light,strain,and temperature.Finally,considering that the relevant technology is still in the basic exploration stage,some prospects or development suggestions are put forward to promote the development of neuromorphic devices.展开更多
Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is ...Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is desirable but remains a significant challenge.In this work,niobium pentoxide(Nb_(2)O_(5))anode and lithium iron phosphate(LiFePO_(4))cathode materials were chosen as the model materials and demonstrate that these three parameters can be simultaneously modulated by incorporation of micro-carbon fibers(MCF)and carbon nanotubes(CNT)with both Nb_(2)O_(5) and LFP via vacuum filtration approach.Both as-prepared MNC-20 anode and MLC-20 cathode achieves high reversible areal capacity of≈5.4 m A h cm^(-2)@0.1 C and outstanding Li-ion diffusion coefficients of≈10~(-8)cm~2 s~(-1)in the half-cell configuration.The assembled MNC-20‖MLC-20 full cell LIB delivers maximum energy and power densities of244.04 W h kg^(-1)and 108.86 W kg^(-1),respectively.The excellent electrochemical properties of the asprepared thick electrodes can be attributed to the highly conductive,mechanical compactness and multidimensional mutual effects of the MCF,CNT and active materials that facilitates rapid Li-ion diffusion kinetics.Furthermore,electrochemical impedance spectroscopy(EIS),symmetric cells analysis,and insitu Raman techniques clearly validates the enhanced Li-ion diffusion kinetics in the present architecture.展开更多
For designing low-impedance magnetic tunnel junctions(MTJs),it has been found that tunneling magnetoresistance strongly correlates with the insulating barrier thickness,imposing a fundamental problem about the relatio...For designing low-impedance magnetic tunnel junctions(MTJs),it has been found that tunneling magnetoresistance strongly correlates with the insulating barrier thickness,imposing a fundamental problem about the relationship between spin polarization of ferromagnet and the insulating barrier thickness in MTJs.Here,we investigate the influence of alumina barrier thickness on tunneling spin polarization(TSP)through a combination of theoretical calculations and experimental verification.Our simulating results reveal a significant impact of barrier thickness on TSP,exhibiting an oscillating decay of TSP with the barrier layer thinning.Experimental verification is realized on FeNi/AlO_(x)/Al superconducting tunnel junctions to directly probe the spin polarization of FeNi ferromagnet using Zeeman-split tunneling spectroscopy technique.These findings provide valuable insights for designs of high-performance spintronic devices,particularly in applications such as magnetic random access memories,where precise control over the insulating barrier layer is crucial.展开更多
In many situations such as the cores of a rotating electrical machine and the T joints of a multiphase transformer, the local flux density varies with time in terms of both magnitude and direction, i.e. the flux densi...In many situations such as the cores of a rotating electrical machine and the T joints of a multiphase transformer, the local flux density varies with time in terms of both magnitude and direction, i.e. the flux density vector is rotating. Therefore, the magnetic properties of the core materials under the rotating flux density vector excitation should be properly measured, modeled and applied in the design and analysis of these electromagnetic devices. This paper presents an extensive review on the development of techniques and apparatus for measuring the rotational core losses of soft magnetic materials based on the experiences of various researchers in the last hundred years.展开更多
The two-dimensional magnetic van der Waals heterojunctions have opened unprecedented opportunities to explore new physics due to their potential for spintronic applications.Here,combing density functional theory with ...The two-dimensional magnetic van der Waals heterojunctions have opened unprecedented opportunities to explore new physics due to their potential for spintronic applications.Here,combing density functional theory with non-equilibrium Green’s function technique.展开更多
To the editor:Transcranial magnetic stimulation(TMS)is a non-invasive brain modulation technique.One important usage of TMS is the transient interruption of cognitive brain function(also named virtual lesion)for inves...To the editor:Transcranial magnetic stimulation(TMS)is a non-invasive brain modulation technique.One important usage of TMS is the transient interruption of cognitive brain function(also named virtual lesion)for investigating precisely where and when a specific cortical region contributes to a specific cognitive function.1 A more important usage of TMS is the treatment of brain disorders by repetitive TMS(rTMS).展开更多
基金Project supported by the National Key R&D Program of China (Grant Nos. 2022YFA1602602 and 2023YFA1609600)the National Natural Science Foundation of China (Grant No. U23A20580)+3 种基金the open research fund of Songshan Lake Materials Laboratory (Grant No. 2022SLABFN27)Beijing National Laboratory for Condensed Matter Physics (Grant No. 2024BNLCMPKF004)Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022B1515120020)the interdisciplinary program of Wuhan National High Magnetic Field Center at Huazhong University of Science and Technology (Grant No. WHMFC202132)。
文摘Conductor materials with good mechanical performance as well as high electrical and thermal conductivities are particularly important to break through the current bottle-neck limit(~ 100 T) of pulsed magnets. Here, we perform systematic studies on the elastic properties of the Cu–6wt% Ag alloy wire, which is a promising candidate material for the new-generation pulsed magnets, by employing two independent ultrasonic techniques, i.e., resonant ultrasound spectroscopy(RUS) and ultrasound pulse-echo experiments. Our RUS measurements manifest that the elastic properties of the Cu–6wt% Ag alloy wires can be improved by an electroplastic drawing procedure as compared with the conventional cold drawing. We also take this opportunity to test the availability of our newly-built ultrasound pulse-echo facility at the Wuhan National High Magnetic Field Center(WHMFC, China), and the results suggest that the elastic performance of the electroplastically-drawn Cu–6wt% Ag alloy wire remains excellent without anomalous softening under extreme conditions,e.g., in ultra-high magnetic field up to 50 T and nitrogen or helium cryogenic liquids.
基金supported by the National Natural Science Foundation of China(Nos.12341501 and 11905074)。
文摘Precise transverse emittance assessment in electron beams is crucial for advancing high-brightness beam injectors.As opposed to intricate methodologies that use specialized devices,quadrupole focusing strength scanning(Q-scanning)techniques offer notable advantages for various injectors owing to their inherent convenience and cost-effectiveness.However,their stringent approximation conditions lead to inevitable errors in practical operation,thereby limiting their widespread application.This study addressed these challenges by revisiting the analytical derivation procedure and investigating the effects of the underlying approximation conditions.Preliminary corrections were explored through a combination of data processing analysis and numerical simulations.Furthermore,based on theoretical derivations,virtual measurements using beam dynamics calculations were employed to evaluate the correction reliability.Subsequent experimental validations were performed at the Huazhong University of Science and Technology injector to verify the effectiveness of the proposed compensation method.Both the virtual and experimental results confirm the feasibility and reliability of the enhanced Q-scanning-based diagnosis for transverse emittance in typical beam injectors operating under common conditions.Through the integration of these corrections and compensations,enhanced Q-scanning-based techniques emerge as promising alternatives to traditional emittance diagnosis methods.
基金Project supported by the National Key Research&Development Program of China(Grant Nos.2019YFA0308600 and 2020YFA0309000)the National Natural Science Foundation of China(Grant Nos.92365302,92065201,22325203,92265105,12074247,12174252,52102336)+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)the Science and Technology Commission of Shanghai Municipality(Grant Nos.2019SHZDZX01,19JC1412701,20QA1405100,24LZ1401000,LZPY2024-04)financial support from the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302500)。
文摘Manipulating and braiding Majorana zero modes(MZM)are a critical step toward realizing topological quantum computing.The primary challenge is controlling the vortex,which hosts the MZM,within a superconducting film in a spatially precise manner.To address this,we developed a magnetic force-based vortex control technology using the STM system with a self-designed four-electrode piezo-scanner tube and investigated vortex manipulation on the NbSe_(2) superconducting film.We employed ferromagnetic tips to control the movement of vortex array induced by the tip's remanent magnetism.A magnetic core solenoid device was integrated into the STM system and a strong magnetic tip demagnetization technique was developed,providing a viable technical solution for further enabling single vortex manipulation.
基金supported by the National Natural Science Foundation of China,Pilot Group Program of the Research Fund for International Senior Scientists(22250710676)National Natural Science Foundation of China(22078064,22378062,22304028)+1 种基金Natural Science Foundation of Fujian Province(2021J02009)Tianjin University-Fuzhou University Independent Innovation Fund Cooperation Project(TF2023-1,TF2023-8).
文摘In recent years,studies focusing on the conversion of renewable lignin-derived oxygenates(LDOs)have emphasized their potential as alternatives to fossil-based products.However,LDOs,existing as complex aromatic mixtures with diverse oxygen-containing functional groups,pose a challenge as they cannot be easily separated via distillation for direct utilization.A promising solution to this challenge lies in the efficient removal of oxygen-containing functional groups from LDOs through hydrodeoxygenation(HDO),aiming to yield biomass products with singular components.However,the high dissociation energy of the carbon-oxygen bond,coupled with its similarity to the hydrogenation energy of the benzene ring,creates a competition between deoxygenation and benzene ring hydrogenation.Considering hydrogen consumption and lignin properties,the preference is directed towards generating aromatic hydrocarbons rather than saturated components.Thus,the goal is to selectively remove oxygen-containing functional groups while preserving the benzene ring structure.Studies on LDOs conversion have indicated that the design of active components and optimization of reaction conditions play pivotal roles in achieving selective deoxygenation,but a summary of the correlation between these factors and the reaction mechanism is lacking.This review addresses this gap in knowledge by firstly summarizing the various reaction pathways for HDO of LDOs.It explores the impact of catalyst design strategies,including morphology modulation,elemental doping,and surface modification,on the adsorption-desorption dynamics between reactants and catalysts.Secondly,we delve into the application of advanced techniques such as spectroscopic techniques and computational modeling,aiding in uncovering the true active sites in HDO reactions and understanding the interaction of reactive reactants with catalyst surface-interfaces.Additionally,fundamental insights into selective deoxygenation obtained through these techniques are highlighted.Finally,we outline the challenges that lie ahead in the design of highly active and selective HDO catalysts.These challenges include the development of detection tools for reactive species with high activity at low concentrations,the study of reaction medium-catalyst interactions,and the development of theoretical models that more closely approximate real reaction situations.Addressing these challenges will pave the way for the development of efficient and selective HDO catalysts,thus advancing the field of renewable LDOs conversion.
文摘Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex structural optimization problems, if the structural reanalysis technique is not adopted, the more the number of finite element analysis (FEA) is, the more the consuming time is. In the conventional structural optimization the number of FEA can be reduced by the structural reanalysis technique based on the approximation techniques and sensitivity analysis. With these techniques, this paper provides a new approximation model-segment approximation model, adopted for the GA application. This segment approximation model can decrease the number of FEA and increase the convergence rate of GA. So it can apparently decrease the computation time of GA. Two examples demonstrate the availability of the new segment approximation model.
基金Project supported by the National Natural Science Foundation of China(Grant No.51590880)National Key Research and Development Program of China(Grant Nos.2014CB643700 and 2016YFB070090)
文摘The melt-spinning technique offers an opportunity for tailoring magnetic properties by controlling the structures and microstructures in both single-phase and composite magnets.This review first broadly discusses the principle of cooling control,amorphization,crystallization,annealing,and consolidation of the melt-spun ribbons.The phase,microstructure,and magnetic properties of popular single-phase nanocrystalline magnets are reviewed,followed by the nanocomposite magnets consisting of magnetically hard and soft phases.The precipitation-hardened magnetic materials prepared by melt spinning are also discussed.Finally,the role of intergrain exchange coupling,thermal fluctuation,and reversible/irreversible magnetization processes are discussed and correlated to the magnetic phenomena in both single-phase and nanocomposite magnets.
基金Project supported by the National Natural Science Foundation of China (Grant No 60674026)the Key Project of Chinese Ministryof Education (Grant No 107058)+1 种基金the Jiangsu Provincial Natural Science Foundation of China (Grant No BK2007016)the Jiangsu Provincial Program for Postgraduate Scientific Innovative Research of Jiangnan University (Grant No CX07B 116z)
文摘In this paper, we focus on the robust adaptive synchronization between two coupled chaotic neural networks with all the parameters unknown and time-varying delay. In order to increase the robustness of the two coupled neural networks, the key idea is that a sliding-mode-type controller is employed. Moreover, without the estimate values of the network unknown parameters taken as an updating object, a new updating object is introduced in the constructing of controller. Using the proposed controller, without any requirements for the boundedness, monotonicity and differentiability of activation functions, and symmetry of connections, the two coupled chaotic neural networks can achieve global robust synchronization no matter what their initial states are. Finally, the numerical simulation validates the effectiveness and feasibility of the proposed technique.
基金Project supported by the National Natural Science Foundation of China(Grants Nos.11175094 and 91221205)the National Basic Research Program of China(Grant No.2015CB921002)
文摘Rapid developments in quantum information processing have been made, and remarkable achievements have been obtained in recent years, both in theory and experiments. Coherent control of nuclear spin dynamics is a powerful tool for the experimental implementation of quantum schemes in liquid and solid nuclear magnetic resonance (NMR) system, especially in liquid-state NMR. Compared with other quantum information processing systems, the NMR platform has the advantages such as the long coherence time, the precise manipulation, and well-developed quantum control techniques, which make it possible to accurately control a quantum system with up to 12-qubits. Extensive applications of liquid-state NMR spectroscopy in quantum information processing such as quantum communication, quantum computing, and quantum simulation have been thoroughly studied over half a century. This article introduces the general principles of NMR quantum information processing, and reviews the new-developed techniques. The review will also include the recent achievements of the experimental realization of quantum algorithms for machine learning, quantum simulations for high energy physics, and topological order in NMR. We also discuss the limitation and prospect of liquid-state NMR spectroscopy and the solid-state NMR systems as quantum computing in the article.
文摘Based on the transmitting theory of "smoke ring effect", the transient electromagnetism technique was used in coal mines to detect abnormal areas of aquiferous structures in both roofs and floors of coal seams and in front of excavated roadways. Survey devices, working methods and techniques as well as data processing and interpretation are discussed systematically. In addition, the direction of mini-wireframe emission electromagnetic wave of the full space transient electromagnetism technique was verified by an underground borehole for water detection and drainage. The result indicates that this technique can detect both horizontal and vertical development rules of abnormal water bodies to a certain depth below the floor of coal seams and can also detect the abnormal, low resistance water bodies within a certain distance of roofs. Furthermore, it can detect such abnormal bodies in ahead of the excavated roadway front. Limited by the underground environment, the full space transient electromagnetism technique can detect to a depth of only 120 m or so.
文摘Even though various wireless Net- work Access Technologies (NATs) with dif- ferent specifications and applications have been developed in the recent years, no single wireless technology alone can satisfy the any- time, anywhere, and any service wire- less-access needs of mobile users. A real seamless wireless mobile environment is only realized by considering vertical and horizontal handoffs together. One of the major design issues in heterogeneous wireless networks is the support of Vertical Handoff (VHO). VHO occurs when a multi-interface enabled mobile terminal changes its Point of Attachment (PoA) from one type of wireless access technology to another, while maintaining an active session. In this paper we present a novel multi-criteria VHO algorithm, which chooses the target NAT based on several factors such as user preferences, system parameters, and traf- tic-types with varying Quality of Service (QoS) requirements. Two modules i.e., VHO Neces- sity Estimation (VHONE) module and target NAT selection module, are designed. Both modules utilize several "weighted" users' and system's parameters. To improve the robust- ness of the proposed algorithm, the weighting system is designed based on the concept of fuzzy linguistic variables.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60974004)the Natural Science Foundation of Jilin Province,China (Grant No. 201115222)
文摘The global stability problem of Takagi-Sugeno(T-S) fuzzy Hopfield neural networks(FHNNs) with time delays is investigated.Novel LMI-based stability criteria are obtained by using Lyapunov functional theory to guarantee the asymptotic stability of the FHNNs with less conservatism.Firstly,using both Finsler's lemma and an improved homogeneous matrix polynomial technique,and applying an affine parameter-dependent Lyapunov-Krasovskii functional,we obtain the convergent LMI-based stability criteria.Algebraic properties of the fuzzy membership functions in the unit simplex are considered in the process of stability analysis via the homogeneous matrix polynomials technique.Secondly,to further reduce the conservatism,a new right-hand-side slack variables introducing technique is also proposed in terms of LMIs,which is suitable to the homogeneous matrix polynomials setting.Finally,two illustrative examples are given to show the efficiency of the proposed approaches.
基金supported by the U.S.National Science Foundation (2208972,2120559,and 2323117)
文摘Rechargeable battery cycling performance and related safety have been persistent concerns.It is crucial to decipher the capacity fading induced by electrode material failure via a range of techniques.Among these,synchrotron-based X-ray techniques with high flux and brightness play a key role in understanding degradation mechanisms.In this comprehensive review,we summarize recent advancements in degra-dation modes and mechanisms that were revealed by synchrotron X-ray methodologies.Subsequently,an overview of X-ray absorption spectroscopy and X-ray scattering techniques is introduced for charac-terizing failure phenomena at local coordination atomic environment and long-range order crystal struc-ture scale,respectively.At last,we envision the future of exploring material failure mechanism.
基金financial support from the National Natural Science Foundation of China(Nos.62104017 and 52072204)Beijing Institute of Technology Research Fund Program for Young Scholars.
文摘Manipulating the expression of synaptic plasticity of neuromorphic devices provides fascinating opportunities to develop hardware platforms for artifi-cial intelligence.However,great efforts have been devoted to exploring biomimetic mechanisms of plasticity simulation in the last few years.Recent progress in various plasticity modulation techniques has pushed the research of synaptic electronics from static plasticity simulation to dynamic plasticity modulation,improving the accuracy of neuromorphic computing and providing strategies for implementing neuromorphic sensing functions.Herein,several fascinating strategies for synap-tic plasticity modulation through chemical techniques,device structure design,and physical signal sensing are reviewed.For chemical techniques,the underly-ing mechanisms for the modification of functional materials were clarified and its effect on the expression of synaptic plasticity was also highlighted.Based on device structure design,the reconfigurable operation of neuromorphic devices was well demonstrated to achieve programmable neuromorphic functions.Besides,integrating the sensory units with neuromorphic processing circuits paved a new way to achieve human-like intelligent perception under the modulation of physical signals such as light,strain,and temperature.Finally,considering that the relevant technology is still in the basic exploration stage,some prospects or development suggestions are put forward to promote the development of neuromorphic devices.
基金supported by the Science and Technology Innovation Program of Hunan Province(2022WZ1012)the Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy(2020CB1007)the Natural Science Foundation of Guangzhou(202201020147)。
文摘Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is desirable but remains a significant challenge.In this work,niobium pentoxide(Nb_(2)O_(5))anode and lithium iron phosphate(LiFePO_(4))cathode materials were chosen as the model materials and demonstrate that these three parameters can be simultaneously modulated by incorporation of micro-carbon fibers(MCF)and carbon nanotubes(CNT)with both Nb_(2)O_(5) and LFP via vacuum filtration approach.Both as-prepared MNC-20 anode and MLC-20 cathode achieves high reversible areal capacity of≈5.4 m A h cm^(-2)@0.1 C and outstanding Li-ion diffusion coefficients of≈10~(-8)cm~2 s~(-1)in the half-cell configuration.The assembled MNC-20‖MLC-20 full cell LIB delivers maximum energy and power densities of244.04 W h kg^(-1)and 108.86 W kg^(-1),respectively.The excellent electrochemical properties of the asprepared thick electrodes can be attributed to the highly conductive,mechanical compactness and multidimensional mutual effects of the MCF,CNT and active materials that facilitates rapid Li-ion diffusion kinetics.Furthermore,electrochemical impedance spectroscopy(EIS),symmetric cells analysis,and insitu Raman techniques clearly validates the enhanced Li-ion diffusion kinetics in the present architecture.
基金supported by the National Natural Science Foundation of China(Grant Nos.11774303 and 11574373)the financial support from“15th Graduate Research Innovation Project”from Yunnan Universityfinancial support from the Joint Fund of Yunnan Provincial Science and Technology Department(Grant No.2019FY003008)。
文摘For designing low-impedance magnetic tunnel junctions(MTJs),it has been found that tunneling magnetoresistance strongly correlates with the insulating barrier thickness,imposing a fundamental problem about the relationship between spin polarization of ferromagnet and the insulating barrier thickness in MTJs.Here,we investigate the influence of alumina barrier thickness on tunneling spin polarization(TSP)through a combination of theoretical calculations and experimental verification.Our simulating results reveal a significant impact of barrier thickness on TSP,exhibiting an oscillating decay of TSP with the barrier layer thinning.Experimental verification is realized on FeNi/AlO_(x)/Al superconducting tunnel junctions to directly probe the spin polarization of FeNi ferromagnet using Zeeman-split tunneling spectroscopy technique.These findings provide valuable insights for designs of high-performance spintronic devices,particularly in applications such as magnetic random access memories,where precise control over the insulating barrier layer is crucial.
文摘In many situations such as the cores of a rotating electrical machine and the T joints of a multiphase transformer, the local flux density varies with time in terms of both magnitude and direction, i.e. the flux density vector is rotating. Therefore, the magnetic properties of the core materials under the rotating flux density vector excitation should be properly measured, modeled and applied in the design and analysis of these electromagnetic devices. This paper presents an extensive review on the development of techniques and apparatus for measuring the rotational core losses of soft magnetic materials based on the experiences of various researchers in the last hundred years.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFB3505301)the Natural Science Basic Research Program of Shanxi(Grant No.20210302124252)the Innovation Project For Teaching Reform of Shanxi(Grant No.J20230616)。
文摘The two-dimensional magnetic van der Waals heterojunctions have opened unprecedented opportunities to explore new physics due to their potential for spintronic applications.Here,combing density functional theory with non-equilibrium Green’s function technique.
基金Ministry Key Project(JW0890006)Key Realm R&D Program of Guangdong Province(2019B030335001)+1 种基金Department of Science and Technology of Sichuan Province(2022NSFSC0808)Key Medical Discipline of Hangzhou,The Cultivation Project of the Province-leveled Preponderant Characteristic Discipline of Hangzhou Normal University(18JYXK046,20JYXK004).
文摘To the editor:Transcranial magnetic stimulation(TMS)is a non-invasive brain modulation technique.One important usage of TMS is the transient interruption of cognitive brain function(also named virtual lesion)for investigating precisely where and when a specific cortical region contributes to a specific cognitive function.1 A more important usage of TMS is the treatment of brain disorders by repetitive TMS(rTMS).