期刊文献+
共找到292,203篇文章
< 1 2 250 >
每页显示 20 50 100
Cyclic behavior of root-loess composites under direct simple shear test conditions and insights from discrete element method modeling
1
作者 SUN Yuan LI Hui CHENG Zhifeng 《水利水电技术(中英文)》 北大核心 2025年第S1期665-680,共16页
Plant roots are widely known to provide mechanical reinforcement to soils against shearing and further increase slope stability.However,whether roots provide reinforcement to loess cyclic re-sistance and how various f... Plant roots are widely known to provide mechanical reinforcement to soils against shearing and further increase slope stability.However,whether roots provide reinforcement to loess cyclic re-sistance and how various factors affect roots reinforcement during seismic loading have rarely been studied.The objective is to conduct a series of cyclic direct simple shear tests and DEM numerical simulation to investigate the cyclic behaviour of rooted loess.The effects of initial static shear stress and loading frequency on the cyclic resistance of root-soil composites were first investigated.After that,cyclic direct simple shear simulations at constant volume were carried out based on the discrete element method(PFC^(3D))to investigate the effects of root geome-try,mechanical traits and root-soil bond strength on the cyclic strength of rooted loess.It was discovered that the roots could effectively improve the cyclic resistance of loess.The cyclic resistance of the root-soil composite decreases with the increase of the initial shear stress,then increases,and improves with the increase of the frequency.The simulation result show that increases in root elastic modulus and root-soil interfacial bond strength can all enhance the cyclic resistance of root-soil composites,and the maximum cyclic resistance of the root-soil composite was obtained when the initial inclination angle of the root system was 90°. 展开更多
关键词 root-soil composite cyclic direct simple shear tests PFC^(3D)
在线阅读 下载PDF
Ethanol-assisted direct synthesis of wafer-scale nitrogen-doped graphene for III-nitride epitaxial growth
2
作者 WEI Wen-ze GAO Xiang +4 位作者 YU Chao-jie SUN Xiao-li WEI Tong-bo JIA Li SUN Jing-yu 《新型炭材料(中英文)》 北大核心 2025年第3期678-687,共10页
Among the synthesis techniques for graphene,chemical vapor deposition(CVD)enables the direct growth of graphene films on insulating substrates.Its advantages include uniform coverage,high quality,scalability,and compa... Among the synthesis techniques for graphene,chemical vapor deposition(CVD)enables the direct growth of graphene films on insulating substrates.Its advantages include uniform coverage,high quality,scalability,and compatibility with industrial processes.Graphene is chemically inert and has a zero-bandgap which poses a problem for its use as a functional layer,and nitrogen doping has become an important way to overcome this.Post-plasma treatment has been explored for the synthesis of nitrogen-doped graphene,but the procedures are intricate and not suitable for large-scale production.We report the direct synthesis of nitrogen-doped graphene on a 4-inch sapphire wafer by ethanol-assisted CVD employing pyridine as the carbon feedstock,where the nitrogen comes from the pyridine and the hydroxyl group in ethanol improves the quality of the graphene produced.Additionally,the types of nitrogen dopant produced and their effects on III-nitride epitaxy were also investigated,resulting in the successful illumination of LED devices.This work presents an effective synthesis strategy for the preparation of nitrogen-doped graphene,and provides a foundation for designing graphene functional layers in optoelectronic devices. 展开更多
关键词 III-nitride epitaxy direct synthesis Ethanol-assisted CVD LED devices Nitrogen-doped graphene
在线阅读 下载PDF
Combing the Entropy Weight Method with Fuzzy Mathematics for Assessing the Quality and Post-Ripening Mechanism of High-Temperature Daqu during Storage
3
作者 YANG Junlin YANG Shaojuan +8 位作者 WU Cheng YIN Yanshun YOU Xiaolong ZHAO Wenyu ZHU Anran WANG Jia HU Feng HU Jianfeng WANG Diqiang 《食品科学》 北大核心 2025年第9期48-62,共15页
This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standar... This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu. 展开更多
关键词 microbial community high-temperature Daqu comprehensive quality evaluation entropy weight method maturation process
在线阅读 下载PDF
Infrared small target detection algorithm via partial sum of the tensor nuclear norm and direction residual weighting
4
作者 SUN Bin XIA Xing-Ling +1 位作者 FU Rong-Guo SHI Liang 《红外与毫米波学报》 北大核心 2025年第2期277-288,共12页
Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small targe... Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small target detection method based on the tensor nuclear norm and direction residual weighting was proposed.Based on converting the infrared image into an infrared patch tensor model,from the perspective of the low-rank nature of the background tensor,and taking advantage of the difference in contrast between the background and the target in different directions,we designed a double-neighborhood local contrast based on direction residual weighting method(DNLCDRW)combined with the partial sum of tensor nuclear norm(PSTNN)to achieve effective background suppression and recovery of infrared small targets.Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target. 展开更多
关键词 infrared small target detection infrared patch tensor model partial sum of the tensor nuclear norm direction residual weighting
在线阅读 下载PDF
An improved efficient adaptive method for large-scale multiexplosives explosion simulations
5
作者 Tao Li Cheng Wang Baojun Shi 《Defence Technology(防务技术)》 2025年第3期28-47,共20页
Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise re... Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise results is inefficient in terms of computational resource.This is particularly evident when large-scale fluid field simulations are conducted with significant differences in computational domain size.In this work,a variable-domain-size adaptive mesh enlargement(vAME)method is developed based on the proposed adaptive mesh enlargement(AME)method for modeling multi-explosives explosion problems.The vAME method reduces the division of numerous empty areas or unnecessary computational domains by adaptively suspending enlargement operation in one or two directions,rather than in all directions as in AME method.A series of numerical tests via AME and vAME with varying nonintegral enlargement ratios and different mesh numbers are simulated to verify the efficiency and order of accuracy.An estimate of speedup ratio is analyzed for further efficiency comparison.Several large-scale near-ground explosion experiments with single/multiple explosives are performed to analyze the shock wave superposition formed by the incident wave,reflected wave,and Mach wave.Additionally,the vAME method is employed to validate the accuracy,as well as to investigate the performance of the fluid field and shock wave propagation,considering explosive quantities ranging from 1 to 5 while maintaining a constant total mass.The results show a satisfactory correlation between the overpressure versus time curves for experiments and numerical simulations.The vAME method yields a competitive efficiency,increasing the computational speed to 3.0 and approximately 120,000 times in comparison to AME and the fully fine mesh method,respectively.It indicates that the vAME method reduces the computational cost with minimal impact on the results for such large-scale high-energy release problems with significant differences in computational domain size. 展开更多
关键词 Large-scale explosion Shock wave Adaptive method Fluid field simulations Efficient method
在线阅读 下载PDF
A New Technique for Constructing Higher-order Iterative Methods to Solve Nonlinear Systems
6
作者 XIAO Xiaoyong 《应用数学》 北大核心 2025年第3期762-774,共13页
In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introduc... In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introducing only one additional evaluation of the function in each step.Furthermore,some new efficient methods with a higher-order of convergence are obtained by using only a single matrix inversion in each iteration.Analyses of convergence properties and computational efficiency of these new methods are made and testified by several numerical problems.By comparison,the new schemes are more efficient than the corresponding existing ones,particularly for large problem sizes. 展开更多
关键词 Systems of nonlinear equation Order of convergence Higher-order method Extended Newton iteration Computational efficiency
在线阅读 下载PDF
An efficient and accurate numerical method for simulating close-range blast loads of cylindrical charges based on neural network
7
作者 Ting Liu Changhai Chen +2 位作者 Han Li Yaowen Yu Yuansheng Cheng 《Defence Technology(防务技术)》 2025年第2期257-271,共15页
To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based sim... To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures. 展开更多
关键词 Close-range air blast load Cylindrical charge Numerical method Neural network CEL method CONWEP model
在线阅读 下载PDF
Effect of pulse current and its application direction on the size effect of nanocrystalline nickel foil
8
作者 WANG Yi-yan LI Chao +2 位作者 CHEN Zi-shuai DU Jin-yang LI Feng 《Journal of Central South University》 2025年第7期2416-2431,共16页
In order to gain a deeper understanding of the effect of pulsed current on the mechanical properties and size effect of nanocrystalline Ni foils,nanocrystalline Ni foils with different grain thickness-to-grain size ra... In order to gain a deeper understanding of the effect of pulsed current on the mechanical properties and size effect of nanocrystalline Ni foils,nanocrystalline Ni foils with different grain thickness-to-grain size ratios(λ)were prepared using pulsed electrodeposition in this paper and unidirectional tensile experiments were carried out at room temperature with different currents and their applied directions.The experimental results show that the nanocrystalline Ni foil produces an obvious electroplasticity effect after applying the current field,and when 300<λ<1100,the current weakens the size effect of nanocrystalline Ni foils to a certain extent,and the angle between the current direction and the deformation direction also affects the mechanical response of nanocrystalline Ni foils,and when the angle between the current direction and the deformation direction is 0°,electroplasticity effect is the best,and the current has the most significant effect of abating the size effect of the material.The mechanism of unidirectional tensile deformation of nanocrystalline Ni foils under the effect of pulsed current was analyzed using TEM and TKD.It was found that the applied pulse current increased the activity of the nanocrystalline boundaries,promoted the movement of dislocations,and reduced the tendency of dislocation entanglement.The higher the peak current density and the smaller the angle between the direction of the current and the direction of deformation,the smaller the grain boundary orientation difference,the more dispersed the grain orientation,and the lower the density of geometrically necessary dislocations(GND)in the deformed nanocrystalline foil,the more significant the effect on material plasticity improvement. 展开更多
关键词 nanocrystalline Ni foil size effect electroplasticity effect current direction
在线阅读 下载PDF
Design and optimization of the RGB beam combiner in micro display using entropy weight-TOPSIS method
9
作者 ZHENG Yu ZHAO Yan-bing +4 位作者 ZOU Xin-jie WANG Ji-rong JIANG Xiang LIU Jian-zhe DUAN Ji-an 《Journal of Central South University》 2025年第2期483-494,共12页
Red-green-blue(RGB)beam combiners are widely used in scenarios such as augmented reality/virtual reality(AR/VR),laser projection,biochemical detection,and other fields.Optical waveguide combiners have attracted extens... Red-green-blue(RGB)beam combiners are widely used in scenarios such as augmented reality/virtual reality(AR/VR),laser projection,biochemical detection,and other fields.Optical waveguide combiners have attracted extensive attention due to their advantages of small size,high multiplexing efficiency,convenient mass production,and low cost.An RGB beam combiner based on directional couplers is designed,with a core-cladding relative refractive index difference of 0.75%.The RGB beam combiner is optimized from the perspective of parameter optimization.Using the beam propagation method(BPM),the relationship between the performance of the RGB beam combiner and individual parameters is studied,achieving preliminary optimization of the device’s performance.The key parameters of the RGB beam combiner are optimized using the entropy weight-technique for order preference by similarity to an ideal solution TOPSIS method,establishing the optimal parameter scheme and further improving the device’s performance indicators.The results show that after optimization,the multiplexing efficiencies for red,green,and blue lights,as well as the average multiplexing efficiency,reached 99.17%,99.76%,96.63%and 98.52%,respectively.The size of the RGB beam combiner is 4.768 mm×0.062 mm. 展开更多
关键词 optical waveguide combiners red-green-blue beam combiner beam propagation method entropy weight TOPSIS method multiplexing efficiency
在线阅读 下载PDF
Design method of high prestressed support for shallow-buried large-span caverns
10
作者 JIANG Bei WEI Hua-yong +3 位作者 WANG Qi WANG Ming-zi YIN Chen ZHANG Yan-bo 《Journal of Central South University》 2025年第3期1099-1116,共18页
The surrounding rock is prone to large-scale loosening and failure after the excavation of shallow large-span caverns because of the thin overlying strata and large cross-section span.The rational design of bolt suppo... The surrounding rock is prone to large-scale loosening and failure after the excavation of shallow large-span caverns because of the thin overlying strata and large cross-section span.The rational design of bolt support is very important to the safety control of surrounding rock as a common support means.The control mechanism and design method of bolt support for shallow-buried large-span caverns is carried out.The calculation method of bolt prestress and length based on arched failure and collapsed failure mode is established.The influence mechanism of different influencing factors on the bolt prestress and length is clarified.At the same time,the constant resistance energy-absorbing bolt with high strength and high toughness is developed,and the comparative test of mechanical properties is carried out.On this basis,the design method of high prestressed bolt support for shallow-buried large-span caverns is put forward,and the field test is carried out in Qingdao metro station in China.The monitoring results show that the maximum roof settlement is 6.8 mm after the new design method is adopted,and the effective control of the shallow-buried large-span caverns is realized.The research results can provide theoretical and technical support for the safety control of shallow-buried large-span caverns. 展开更多
关键词 Hoek-Brown strength criterion shallow-buried large-span caverns limit analysis upper bound method high prestress bolt support design method
在线阅读 下载PDF
Observed-based adaptive neural tracking control for nonlinear systems with unknown control directions and input delay
11
作者 DENG Yuxuan WANG Qingling 《Journal of Systems Engineering and Electronics》 2025年第1期269-279,共11页
Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncerta... Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncertain systems characterized by unknown control directions and time-varying input delay lacks comprehensive solutions.In this paper,we propose an observerbased adaptive tracking controller to address this gap.Neural networks are utilized to handle uncertainty,and a unique coordinate transformation is employed to untangle the coupling between input delay and unknown control directions.Subsequently,a new auxiliary signal counters the impact of time-varying input delay,while a Nussbaum function is introduced to solve the problem of unknown control directions.The leverage of an advanced dynamic surface control technique avoids the“complexity explosion”and reduces boundary layer errors.Synthesizing these techniques ensures that all the closed-loop signals are semi-globally uniformly ultimately bounded(SGUUB),and the tracking error converges to a small region around the origin by selecting suitable parameters.Simulation examples are provided to demonstrate the feasibility of the proposed approach. 展开更多
关键词 adaptive neural network dynamic surface control unknown control direction input delay
在线阅读 下载PDF
Preparation of Si/NC/CL-20 Composite Explosives by Electrostatic Spraying Method and Its Performance Characterization
12
作者 DUAN Yi-long WANG Ling-xin +3 位作者 DONG Jun LI Xiu-long HE Xi JI Wei 《火炸药学报》 北大核心 2025年第5期424-429,I0001,共7页
To study the influence of silicon(Si)on 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20),NC/CL-20 composite explosives and Si/NC/CL-20 composite explosives were prepared by the electrostatic spraying ... To study the influence of silicon(Si)on 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20),NC/CL-20 composite explosives and Si/NC/CL-20 composite explosives were prepared by the electrostatic spraying method.The morphology,structure and thermal decomposition properties of the samples were analyzed using scanning electron microscopy(SEM),X-ray energy spectroscopy(EDS),infrared spectroscopy(FT-IR),and simultaneous thermal analyzer(TG-DSC).Additionally,the combustion process of the samples was tested using a high-speed camera.The results show that the addition of nano-Si contributes to the formation of composite explosives with regular morphology and smaller particle size.The Si/NC/CL-20 composite explosive has better and more uniform sphericity,with an average particle size of 73.4 nm,compared to the NC/CL-20 composite explosive.The Si/NC/CL-20 composite explosive which produced by the electrostatic spraying method,achieves physically uniform distribution of the components including NC,CL-20,Si.The addition of Si promotes the thermal decomposition of CL-20.In comparison to the NC/CL-20 composite explosive,the activation energy of the Si/NC/CL-20 composite explosive decreases by 16.78 kJ/mol,and the self-accelerated decomposition temperature and the critical temperature of thermal explosion decreases by 3.12 K and 2.61 K,respectively.Furthermore,Si/NC/CL-20 composite explosive has shorter ignition delay time and faster combustion rate compared to the NC/CL-20 composite explosive,which shows that Si can improve the combustion performance of CL-20. 展开更多
关键词 applied chemistry electrostatic spraying method SI Si/NC/CL-20 thermal decomposition performance combustion performance
在线阅读 下载PDF
Improved microstructure and mechanical properties of A517Q steel fabricated via laser directed energy deposition assisted by ultrasonic vibration combined with tempering treatment
13
作者 LI Jian-liang REN He +6 位作者 WANG Qi-chen CHEN Zu-bin JIANG Guo-rui SUN Wen-yao SU Ye-tong GUO Chun-huan JIANG Feng-chun 《Journal of Central South University》 2025年第3期760-775,共16页
In this work,ultrasonic energy field assistance combined with tempering treatment is proposed to improve the microstructure and mechanical properties of A517Q alloy steel fabricated by laser directed energy deposition... In this work,ultrasonic energy field assistance combined with tempering treatment is proposed to improve the microstructure and mechanical properties of A517Q alloy steel fabricated by laser directed energy deposition(LDED).The effects of ultrasonic vibration(UV)and tempering treatment on microstructure evolution,microhardness distribution and mechanical properties of deposition layer were studied in detail.The microstructure of UV assisted LDED sample after tempering is mainly composed of tempered sorbite(TS).Due to the improvement of microstructure inhomogeneity and grains refinement,UV assisted LDED sample with tempering treatment obtains excellent mechanical properties.The ultimate tensile strength(UTS),yield strength(YS)and elongation after breaking(EL)reach 765 MPa,657 MPa and 19.5%,the increase ratios of UTS and YS are 14.5%and 33.8%while maintaining plasticity compared to original LDED sample,respectively.It is obvious that ultrasonic vibration combined with tempering is a potential and effective method to obtain uniform microstructure and excellent mechanical properties in metal laser directed energy deposition field. 展开更多
关键词 laser directed energy deposition ultrasonic vibration TEMPERING microstructure mechanical property A517Q steel
在线阅读 下载PDF
A Fast Algorithm for Solving the Poisson Equations Based on the Discrete Cosine/Sine Transforms in the Finite Difference Method
14
作者 LI Congcong WANG Danxia +1 位作者 JIA Hongen ZHANG Chenhui 《应用数学》 北大核心 2025年第3期651-669,共19页
To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical c... To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical computation of such models.This efficient solver employs algorithms based on discrete cosine transformations(DCT)or discrete sine transformations(DST)and is not restricted by any spatio-temporal schemes.Our proposed methodology is appropriate for a variety of phase-field models and is especially efficient when combined with flow field systems.Meanwhile,this study has conducted an extensive numerical comparison and found that employing DCT and DST techniques not only yields results comparable to those obtained via the Multigrid(MG)method,a conventional approach used in the resolution of the Poisson equations,but also enhances computational efficiency by over 90%. 展开更多
关键词 Phase-field model Finite difference method Fast Poisson solver(DC-T/DST) Explicit invariant energy quadratization Unconditional energy stability
在线阅读 下载PDF
Size-dependent heat conduction of thermal cellular structures: A surface-enriched multiscale method
15
作者 Xiaofeng Xu Junfeng Li +2 位作者 Xuanhao Wu Ling Ling Li Li 《Defence Technology(防务技术)》 2025年第7期50-67,共18页
This paper examined how microstructure influences the homogenized thermal conductivity of cellular structures and revealed a surface-induced size-dependent effect.This effect is linked to the porous microstructural fe... This paper examined how microstructure influences the homogenized thermal conductivity of cellular structures and revealed a surface-induced size-dependent effect.This effect is linked to the porous microstructural features of cellular structures,which stems from the degree of porosity and the distri-bution of the pores.Unlike the phonon-driven surface effect at the nanoscale,the macro-scale surface mechanism in thermal cellular structures is found to be the microstructure-induced changes in the heat conduction path based on fully resolved 3D numerical simulations.The surface region is determined by the microstructure,characterized by the intrinsic length.With the coupling between extrinsic and intrinsic length scales under the surface mechanism,a surface-enriched multiscale method was devel-oped to accurately capture the complex size-dependent thermal conductivity.The principle of scale separation required by classical multiscale methods is not necessary to be satisfied by the proposed multiscale method.The significant potential of the surface-enriched multiscale method was demon-strated through simulations of the effective thermal conductivity of a thin-walled metamaterial struc-ture.The surface-enriched multiscale method offers higher accuracy compared with the classical multiscale method and superior efficiency over high-fidelity finite element methods. 展开更多
关键词 Thermal conductivity Surface-enriched multiscale method METAMATERIAL Surface effect Multi-scale modeling
在线阅读 下载PDF
A high output power 340 GHz balanced frequency doubler designed based on linear optimization method
16
作者 LIU Zhi-Cheng ZHOU Jing-Tao +5 位作者 MENG Jin WEI Hao-Miao YANG Cheng-Yue SU Yong-Bo JIN Zhi JIA Rui 《红外与毫米波学报》 北大核心 2025年第2期184-191,共8页
In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the ... In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the rapid determination of optimal embedding impedance for diodes across a specific bandwidth to achieve maximum efficiency through harmonic balance simulations.By optimizing the linear matching circuit with the optimal embedding impedance,the method effectively segregates the simulation of the linear segments from the nonlinear segments in the frequency multiplier circuit,substantially improving the speed of simulations.The design of on-chip linear matching circuits adopts a modular circuit design strategy,incorporating fixed load resistors to simplify the matching challenge.Utilizing this approach,a 340 GHz frequency doubler was developed and measured.The results demonstrate that,across a bandwidth of 330 GHz to 342 GHz,the efficiency of the doubler remains above 10%,with an input power ranging from 98 mW to 141mW and an output power exceeding 13 mW.Notably,at an input power of 141 mW,a peak output power of 21.8 mW was achieved at 334 GHz,corresponding to an efficiency of 15.8%. 展开更多
关键词 linear optimization method(LOM) three-dimensional electromagnetic model(3D-EM) Harmonic impedance optimization Schottky planar diode Terahertz frequency doubler
在线阅读 下载PDF
Electrical properties of PVDF/PZT composite films prepared by direct ink writing
17
作者 ZHOU Run-kai YANG Hong +4 位作者 PENG Chao-qun WANG Ri-chu ZHANG Dou FANG Guang-qiang WANG Xiao-feng 《Journal of Central South University》 2025年第1期71-81,共11页
Polyvinylidene fluoride/lead zirconate titanate(PVDF/PZT)composite films have been prepared by direct ink writing and the effect of PZT content on crystallization behavior and electrical properties of film were system... Polyvinylidene fluoride/lead zirconate titanate(PVDF/PZT)composite films have been prepared by direct ink writing and the effect of PZT content on crystallization behavior and electrical properties of film were systematically investigated.The composite films were characterized by scanning electron microscope(SEM),X-ray diffractometer(XRD),Flourier transform infrared spectroscope(FTIR)and differential scanning calorimeter(DSC).The results show that,surface modified PZT powder(PZT@PDA)is successfully coated by polydopamine(PDA),resulting in a large number of polar groups that interact with the-CF_(2)-groups in PVDF,inducing the generation of polarβphase due to hydrogen bonding formed in the interaction.Theβphase content in composite film increases with increasing PZT@PDA content,up to 28.09%as with 5 wt.%PZT@PDA.PZT@PDA plays a role of nucleating agent to promote the generation of polar phases in the film and also acts as an impurity hindering the growth of nuclei to reduce crystallinity.Moreover,the presence of PZT@PDA in interfaces provides more sites for the occurrence of interfacial polarization and thus improving the electrical properties of films.The composite film with 5 wt.%PZT@PDA possesses the highest dielectric constant(8.61)and residual polarization value(0.6803μC/cm^(2)). 展开更多
关键词 polyvinylidene fluoride(PVDF) lead zirconate titanate(PZT) direct ink writing crystallization behaviour electrical properties
在线阅读 下载PDF
Optimization of Infrared-microwave Post-processing Process for 3D Printed Raspberry Preserves Based on AHP-CRITIC Hybrid Weighting Combined with Response Surface Method
18
作者 Zheng Xianzhe Song Ruonan +2 位作者 Cong Hongyue Zhang Yuhan Xue Liangliang 《Journal of Northeast Agricultural University(English Edition)》 2025年第1期27-44,共18页
In order to improve the quality of 3D printed raspberry preserves after post-processing,microwave ovens combining infrared and microwave methods were utilized.The effects of infrared heating temperature,infrared heati... In order to improve the quality of 3D printed raspberry preserves after post-processing,microwave ovens combining infrared and microwave methods were utilized.The effects of infrared heating temperature,infrared heating time,microwave power,microwave heating time on the center temperature,moisture content,the chroma(C*),the total color difference(ΔE*),shape fidelity,hardness,and the total anthocyanin content of 3D printed raspberry preserves were analyzed by response surface method(RSM).The results showed that under combining with the two methods,infrared heating improved the fidelity and quality degradation of printed products,while microwave heating enhanced the efficiency of infrared heating.Infrared-microwave combination cooking could maintain relatively stable color appearance and shape of 3D printed raspberry preserves.The AHP–CRITIC hybrid weighting method combined with the response surface test to determine the comprehensive weights of the evaluation indicators optimized the process parameters,and the optimal process parameters were obtained:infrared heating temperature of 190℃,infrared heating time of 10 min and 30 s,microwave power of 300 W,and microwave heating time of 2 min and 6 s.The 3D printed raspberry cooking methods obtained under the optimal conditions seldom had color variation,porous structure,uniform texture,and high shape fidelity,which retained the characteristics of personalized manufacturing by 3D printing.This study could provide a reference for the postprocessing and quality control of 3D cooking methods. 展开更多
关键词 3D printing RASPBERRY MICROWAVE infrared heating hybrid weighting response surface method
在线阅读 下载PDF
A novel asymptotic linear method for micro-pressure wave mitigation at high-speed maglev tunnel exit:A case study with various open ratios on tunnel hoods
19
作者 ZHANG Jie ZHANG Mo-lin +2 位作者 HAN Shuai LIU Tang-hong GAO Guang-jun 《Journal of Central South University》 2025年第5期1955-1972,共18页
A high-speed train travelling from the open air into a narrow tunnel will cause the“sonic boom”at tunnel exit.When the maglev train’s speed reaches 600 km/h,the train-tunnel aerodynamic effect is intensified,so a n... A high-speed train travelling from the open air into a narrow tunnel will cause the“sonic boom”at tunnel exit.When the maglev train’s speed reaches 600 km/h,the train-tunnel aerodynamic effect is intensified,so a new mitigation method is urgently expected to be explored.This study proposed a novel asymptotic linear method(ALM)for micro pressure wave(MPW)mitigation to achieve a constant gradient of initial c ompression waves(ICWs),via a study with various open ratios on hoods.The properties of ICWs and MPWs under various open ratios of hoods were analyzed.The results show that as the open ratio increases,the MPW amplitude at the tunnel exit initially decreases before rising.At the open ratio of 2.28%,the slope of the ICW curve is linearly coincident with a supposed straight line in the ALM,which further reduces the MPW amplitude by 26.9%at 20 m and 20.0%at 50 m from the exit,as compared to the unvented hood.Therefore,the proposed method effectively mitigates MPW and quickly determines the upper limit of alleviation for the MPW amplitude at a fixed train-tunnel operation condition.All achievements provide a ne w potential measure for the adaptive design of tunnel hoods. 展开更多
关键词 novel asymptotic linear method high-speed maglev train micro-pressure wave tunnel hood with various open ratios
在线阅读 下载PDF
An improved limit equilibrium method for rock slope stability analysis under stress-based calculation mode for slip surface
20
作者 DENG Dong-ping ZHANG Dian +1 位作者 PENG Yi-hang CHEN Hao-yu 《Journal of Central South University》 2025年第1期262-287,共26页
This study proposes an alternative calculation mode for stresses on the slip surface(SS).The calculation of the normal stress(NS)on the SS involves examining its composition and expanding its unknown using the Taylor ... This study proposes an alternative calculation mode for stresses on the slip surface(SS).The calculation of the normal stress(NS)on the SS involves examining its composition and expanding its unknown using the Taylor series.This expansion enables the reasonable construction of a function describing the NS on the SS.Additionally,by directly incorporating the nonlinear Generalized Hoke-Brown(GHB)strength criterion and utilizing the slope factor of safety(FOS)definition,a function of the shear stress on the SS is derived.This function considers the mutual feedback mechanism between the NS and strength parameters of the SS.The stress constraints conditions are then introduced at both ends of the SS based on the spatial stress relation of one point.Determining the slope FOS and stress solution for the SS involves considering the mechanical equilibrium conditions and the stress constraint conditions satisfied by the sliding body.The proposed approach successfully simulates the tension-shear stress zone near the slope top and provides an intuitive description of the concentration effect of compression-shear stress of the SS near the slope toe.Furthermore,compared to other methods,the present method demonstrates superior processing capabilities for the embedded nonlinear GHB strength criterion. 展开更多
关键词 stability of rock slope nonlinear GHB strength criterion limit equilibrium method stress function on slip surface stress constraint conditions at both ends of slip surface
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部