带拥挤距离排挤机制的非支配排序遗传算法(NSGA-II)在多目标优化领域具有广泛的应用,NSGA-II算法具有个体分布不均匀以及重复个体较多等缺陷.针对这些缺陷提出一种基于向量空间模型的NSGA-II改进算法VSMGA(Vector Space M odel Genetic ...带拥挤距离排挤机制的非支配排序遗传算法(NSGA-II)在多目标优化领域具有广泛的应用,NSGA-II算法具有个体分布不均匀以及重复个体较多等缺陷.针对这些缺陷提出一种基于向量空间模型的NSGA-II改进算法VSMGA(Vector Space M odel Genetic Algorithm),VSM GA算法在NSGA-II算法的基础上引入了向量空间模型,利用目标权重向量之间的余弦距离代替原来的拥挤距离,提出一种距离排挤机制和重复个体排除规则.实验结果表明与NSGA-II算法比较,VSMGA算法具有更好的分布性和稳定性.展开更多
在挤出机单螺杆计量段二维解析建模的基础上,采用交叉验证方法构建人工神经网络(artificial neural network,ANN)模型并对其进行了超参数优化,以有效地映射挤出机工作条件和结构参数与生产率和功耗之间的复杂非线性关系。提出利用ANN代...在挤出机单螺杆计量段二维解析建模的基础上,采用交叉验证方法构建人工神经网络(artificial neural network,ANN)模型并对其进行了超参数优化,以有效地映射挤出机工作条件和结构参数与生产率和功耗之间的复杂非线性关系。提出利用ANN代理模型,结合NSGA-Ⅱ(non-dominated sorting genetic algorithmⅡ)算法对螺杆计量段的结构参数进行多目标优化,并通过TOPSIS(technique for order preference by similarity to an ideal solution)法得到最优生产率和功耗组合的结构参数。相关工作对单螺杆计量段结构参数的智能化设计具有理论指导意义。展开更多
文摘带拥挤距离排挤机制的非支配排序遗传算法(NSGA-II)在多目标优化领域具有广泛的应用,NSGA-II算法具有个体分布不均匀以及重复个体较多等缺陷.针对这些缺陷提出一种基于向量空间模型的NSGA-II改进算法VSMGA(Vector Space M odel Genetic Algorithm),VSM GA算法在NSGA-II算法的基础上引入了向量空间模型,利用目标权重向量之间的余弦距离代替原来的拥挤距离,提出一种距离排挤机制和重复个体排除规则.实验结果表明与NSGA-II算法比较,VSMGA算法具有更好的分布性和稳定性.
文摘在挤出机单螺杆计量段二维解析建模的基础上,采用交叉验证方法构建人工神经网络(artificial neural network,ANN)模型并对其进行了超参数优化,以有效地映射挤出机工作条件和结构参数与生产率和功耗之间的复杂非线性关系。提出利用ANN代理模型,结合NSGA-Ⅱ(non-dominated sorting genetic algorithmⅡ)算法对螺杆计量段的结构参数进行多目标优化,并通过TOPSIS(technique for order preference by similarity to an ideal solution)法得到最优生产率和功耗组合的结构参数。相关工作对单螺杆计量段结构参数的智能化设计具有理论指导意义。