Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In p...Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In particular,an unstable cathode–electrolyte interphase(CEI)leads to successive electrolyte side reactions,transition metal leaching and rapid capacity decay,which tends to be exacerbated under high-voltage conditions.Therefore,constructing dense and stable CEIs are crucial for high-performance SIBs.This work reports localized high-concentration electrolyte by incorporating a highly oxidation-resistant sulfolane solvent with non-solvent diluent 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether,which exhibited excellent oxidative stability and was able to form thin,dense and homogeneous CEI.The excellent CEI enabled the O3-type layered oxide cathode NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)(NaNMF)to achieve stable cycling,with a capacity retention of 79.48%after 300 cycles at 1 C and 81.15%after 400 cycles at 2 C with a high charging voltage of 4.2 V.In addition,its nonflammable nature enhances the safety of SIBs.This work provides a viable pathway for the application of sulfolane-based electrolytes on SIBs and the design of next-generation high-voltage electrolytes.展开更多
Sb_(2)Se_(3)solar cells have achieved a power conversion efficiency(PCE)of over 10%.However,the serious open-circuit voltage deficit(VOC-deificit),induced by the hard-to-control crystal orientation and heterojunction ...Sb_(2)Se_(3)solar cells have achieved a power conversion efficiency(PCE)of over 10%.However,the serious open-circuit voltage deficit(VOC-deificit),induced by the hard-to-control crystal orientation and heterojunction interface reaction,limits the PCE of vapor transport deposition(VTD)processed Sb_(2)Se_(3)solar cells.To overcome the VOC-deficit problem of VTD processed Sb_(2)Se_(3)solar cells,herein,an in-situ bandgap regulation strategy is innovatively proposed to prepare a wide band gap Sb2(S,Se)3seed layer(WBSL)at CdS/Sb_(2)Se_(3)heterojunction interface to improve the PCE of Sb_(2)Se_(3)solar cells.The analysis results show that the introduced Sb2(S,Se)3seed layer can enhance the[001]orientation of Sb_(2)Se_(3)thin films,broaden the band gap of heterojunction interface,and realize a"Spike-like"conduction band alignment with ΔE_(c)=0.11 eV.In addition,thanks to the suppressed CdS/Sb_(2)Se_(3)interface reaction after WBSL application,the depletion region width of Sb_(2)Se_(3)solar cells is widened,and the quality of CdS/Sb_(2)Se_(3)interface and the carrier transporting performance of Sb_(2)Se_(3)solar cells are significantly improved as well.Moreover,the harmful Se vacancy defects near the front interface of Sb_(2)Se_(3)solar cells can be greatly diminished by WBSL.Finally,the PCE of Sb_(2)Se_(3)solar cells is improved from 7.0%to 7.6%;meanwhile the VOCis increased to 466 mV which is the highest value for the VTD derived Sb_(2)Se_(3)solar cells.This work will provide a valuable reference for the interface and orientation regulation of antimony-based chalcogenide solar cells.展开更多
Aiming at the gas discharge problem in electric aircraft,this work studies the gas discharge characteristics at low-temperature sub-atmospheric pressure.A gas discharge shooting platform was built,and the discharge pr...Aiming at the gas discharge problem in electric aircraft,this work studies the gas discharge characteristics at low-temperature sub-atmospheric pressure.A gas discharge shooting platform was built,and the discharge process was photographed by intensified charge-coupled device(ICCD).A two-dimensional axisymmetric model of needle-plate electrode gas discharge was established,and three sets of Helmholtz equations were used to solve the photoionization.The results show that under the same voltage,the electric field intensity in the discharge process increases first,then decreases and finally increases again.The discharge speed increases with the increase of altitude,and the electron density in the streamer decreases with the increase of altitude.The development speed of the streamer in the middle stage is higher than that in the early stage,and the speed increases more obviously with the increase of altitude.The development speed of the streamer in the later stage is lower than that in the middle stage,but with the increase of altitude,the development speed of the streamer in the later stage is higher than that in the middle stage.展开更多
The negative ion based neutral beam injector(NNBI)with a beam energy of 400 keV is one of the subsystems at the Comprehensive Research fAcility for Fusion Technology(CRAFT)in China.The distributed capacitance of the h...The negative ion based neutral beam injector(NNBI)with a beam energy of 400 keV is one of the subsystems at the Comprehensive Research fAcility for Fusion Technology(CRAFT)in China.The distributed capacitance of the high-voltage components is an important basis for the design of surge suppression devices at CRAFT NNBI.This study conducted calculations of distributed capacitance for the key components,including the high-voltage deck,transmission line and isolation transformer in the power supply system using the finite element method.The relationship between the high-voltage deck(HVD)distributed capacitance and the distance from the wall is discussed.The differences in distributed capacitance and energy storage between noncoaxial and coaxial transmission lines are also debated.Finally,the capacitance between the primary and secondary windings of the-400 kV isolation transformer,as well as between the secondary winding and the oil tank casing,was calculated.展开更多
Single-crystalline Ni-rich cathodes can provide high energy density and capacity retention rates for lithium-ion batteries(LIBs).However,single-crystalline Ni-rich cathodes experience severe transition metal dissoluti...Single-crystalline Ni-rich cathodes can provide high energy density and capacity retention rates for lithium-ion batteries(LIBs).However,single-crystalline Ni-rich cathodes experience severe transition metal dissolution,irreversible phase transitions,and reduced structural stability during prolonged cycling at high voltage,which will significantly hinder their practical application.Herein,a Li4TeO5surface coating along with bulk Te-gradient doping strategy is proposed and developed to solve these issues for single-crystalline Ni-rich LiNi_(0.90)Co_(0.05)Mn_(0.05)O_(2)cathode(LTeO-1.0).It has been found that the bulk Te^(6+)gradient doping can lead to the formation of robust Te-O bonds that effectively inhibit H_(2)-H3 phase transformations and reinforce the lattice framework,and the in-situ Li4TeO5coating layer can act as a protective layer that suppresses the parasitic reactions and grain fragmentation.Besides,the modified material exhibits a higher Young's modulus,which will be conducive to maintaining significant structural and electrochemical stability under high-voltage conditions,Especially,the LTeO-1.0 electrode shows the improved Li^(+)diffusion kinetics and thermodynamic stability as well as high capacity retention of 95.83%and 82.12%after 200 cycles at the cut-off voltage of 4.3 and 4,5 V.Therefore,the efficacious dualmodification strategy will definitely contribute to enhancing the structural and electrochemical stability of single-crystalline Ni-rich cathodes and developing their application in LIBs.展开更多
Compared with organic electrolytes,aqueous electrolytes exhibit significantly higher ionic conductivity and possess inherent safety features,showcasing unique advantages in supercapacitors.However,challenges remain fo...Compared with organic electrolytes,aqueous electrolytes exhibit significantly higher ionic conductivity and possess inherent safety features,showcasing unique advantages in supercapacitors.However,challenges remain for low-salt aqueous electrolytes operating at high voltage and low temperature.Herein,we report a low-salt(0.87 m,m means mol kg^(-1))'salt in dimethyl sulfoxide/water'hybrid electrolyte with non-flammability via hybridizing aqueous electrolyte with an organic co-solvent of dimethyl sulfoxide(hydrogen bond acceptor).As a result,the 0.87 m hybrid electrolyte exhibits enhanced electrochemical stability,a freezing temperature below-50℃,and an outstanding ionic conductivity of 0.52mS cm~(-1)at-50℃.Dimethyl sulfoxide can anchor water molecules through intermolecular hydrogen bond interaction,effectively reinforcing the stability of water in the hybrid electrolyte.Furthermore,the interaction between dimethyl sulfoxide and water molecules diminishes the involvement of water in the generation of ordered ice crystals,finally facilitating the low-temperature performance of the hybrid electrolyte.When paired with the 0.87 m'salt in dimethyl sulfoxide/water'hybrid electrolyte,the symmetric supercapacitor presents a 2.0 V high operating voltage at 25℃,and can operate stably at-50℃.Importantly,the suppressed electrochemical reaction of water at-50℃further leads to the symmetric supercapacitor operated at a higher voltage of 2.6 V.This modification strategy opens an effective avenue to develop low-salt electrolytes for high-voltage and low-temperature aqueous supercapacitors.展开更多
Battery management systems(BMSs) play a vital role in ensuring efficient and reliable operations of lithium-ion batteries.The main function of the BMSs is to estimate battery states and diagnose battery health using b...Battery management systems(BMSs) play a vital role in ensuring efficient and reliable operations of lithium-ion batteries.The main function of the BMSs is to estimate battery states and diagnose battery health using battery open-circuit voltage(OCV).However,acquiring the complete OCV data online can be a challenging endeavor due to the time-consuming measurement process or the need for specific operating conditions required by OCV estimation models.In addressing these concerns,this study introduces a deep neural network-combined framework for accurate and robust OCV estimation,utilizing partial daily charging data.We incorporate a generative deep learning model to extract aging-related features from data and generate high-fidelity OCV curves.Correlation analysis is employed to identify the optimal partial charging data,optimizing the OCV estimation precision while preserving exceptional flexibility.The validation results,using data from nickel-cobalt-magnesium(NCM) batteries,illustrate the accurate estimation of the complete OCV-capacity curve,with an average root mean square errors(RMSE) of less than 3 mAh.Achieving this level of precision for OCV estimation requires only around 50 s collection of partial charging data.Further validations on diverse battery types operating under various conditions confirm the effectiveness of our proposed method.Additional cases of precise health diagnosis based on OCV highlight the significance of conducting online OCV estimation.Our method provides a flexible approach to achieve complete OCV estimation and holds promise for generalization to other tasks in BMSs.展开更多
The electrolyte directly contacts the essential parts of a lithium-ion battery,and as a result,the electrochemical properties of the electrolyte have a significant impact on the voltage platform,charge discharge capac...The electrolyte directly contacts the essential parts of a lithium-ion battery,and as a result,the electrochemical properties of the electrolyte have a significant impact on the voltage platform,charge discharge capacity,energy density,service life,and rate discharge performance.By raising the voltage at the charge/discharge plateau,the energy density of the battery is increased.However,this causes transition metal dissolution,irreversible phase changes of the cathode active material,and parasitic electrolyte oxidation reactions.This article presents an overview of these concerns to provide a clear explanation of the issues involved in the development of electrolytes for high-voltage lithium-ion batteries.Additionally,solidstate electrolytes enable various applications and will likely have an impact on the development of batteries with high energy densities.It is necessary to improve the high-voltage performance of electrolytes by creating solvents with high thermal stabilities and high voltage resistance and additives with superior film forming performance,multifunctional capabilities,and stable lithium salts.To offer suggestions for the future development of high-energy lithium-ion batteries,we conclude by offering our own opinions and insights on the current development of lithium-ion batteries.展开更多
Li-rich layered oxide(LRLO)cathodes have been regarded as promising candidates for next-generation Li-ion batteries due to their exceptionally high energy density,which combines cationic and anionic redox activities.H...Li-rich layered oxide(LRLO)cathodes have been regarded as promising candidates for next-generation Li-ion batteries due to their exceptionally high energy density,which combines cationic and anionic redox activities.However,continuous voltage decay during cycling remains the primary obstacle for practical applications,which has yet to be fundamentally addressed.It is widely acknowledged that voltage decay originates from the irreversible migration of transition metal ions,which usually further exacerbates structural evolution and aggravates the irreversible oxygen redox reactions.Recently,constructing O2-type structure has been considered one of the most promising approaches for inhibiting voltage decay.In this review,the relationship between voltage decay and structural evolution is systematically elucidated.Strategies to suppress voltage decay are systematically summarized.Additionally,the design of O2-type structure and the corresponding mechanism of suppressing voltage decay are comprehensively discussed.Unfortunately,the reported O2-type LRLO cathodes still exhibit partially disordered structure with extended cycles.Herein,the factors that may cause the irreversible transition metal migrations in O2-type LRLO materials are also explored,while the perspectives and challenges for designing high-performance O2-type LRLO cathodes without voltage decay are proposed.展开更多
In-situ XRD,^(31)P NMR and ^(23)Na NMR were used to analyze the interaction behavior of Na_(3)V_(2)(PO_(4))_(3) at low voltage,and then a new intercalation model was proposed.During the transition from Na_(3)V_(2)(PO_...In-situ XRD,^(31)P NMR and ^(23)Na NMR were used to analyze the interaction behavior of Na_(3)V_(2)(PO_(4))_(3) at low voltage,and then a new intercalation model was proposed.During the transition from Na_(3)V_(2)(PO_(4))_(3) to Na_(4)V_(2)(PO_(4))_(3),Na ions insert into M1,M2 and M3 sites simultaneously.Afterwards,during the transition of Na_(4)V_(2)(PO_(4))_(3)to Na_(5)V_(2)(PO_(4))_(3),Na ions mainly insert into M3 site.展开更多
The charge quantity of small particulates such as PM2.5 plays a key role in the collection efficiency of an electrostatic precipitator(ESP). Under a single electrostatic voltage, it is difficult to charge and absorb...The charge quantity of small particulates such as PM2.5 plays a key role in the collection efficiency of an electrostatic precipitator(ESP). Under a single electrostatic voltage, it is difficult to charge and absorb small particulates. A new method of superimposing an alternative voltage on the electrostatic voltage is provided in this paper. Characteristics of small particulates are analyzed under alternative and electrostatic voltages. It is demonstrated that an alternative voltage can significantly improve the collection efficiency in three aspects: preventing anti-corona, increasing the charge quantity of small particulates, and increasing the median particulate size by electric agglomeration. In addition, practical usage with the superposition of alternative voltage is provided, and the results are in agreement with the theoretical analysis.展开更多
Using computer-aided design three-dimensional simulation technology,the supply voltage scaled dependency of the recovery of single event upset and charge collection in static random-access memory cells are investigate...Using computer-aided design three-dimensional simulation technology,the supply voltage scaled dependency of the recovery of single event upset and charge collection in static random-access memory cells are investigated.It reveals that the recovery linear energy transfer threshold decreases with the supply voltage reducing,which is quite attractive for dynamic voltage scaling and subthreshold circuit radiation-hardened design.Additionally,the effect of supply voltage on charge collection is also investigated.It is concluded that the supply voltage mainly affects the bipolar gain of the parasitical bipolar junction transistor(BJT) and the existence of the source plays an important role in supply voltage variation.展开更多
To mitigate the impact of noise and inter-ference on multi-level-cell(MLC)flash memory with the use of low-density parity-check(LDPC)codes,we propose a dynamic write-voltage design scheme con-sidering the asymmetric p...To mitigate the impact of noise and inter-ference on multi-level-cell(MLC)flash memory with the use of low-density parity-check(LDPC)codes,we propose a dynamic write-voltage design scheme con-sidering the asymmetric property of raw bit error rate(RBER),which can obtain the optimal write voltage by minimizing a cost function.In order to further improve the decoding performance of flash memory,we put forward a low-complexity entropy-based read-voltage optimization scheme,which derives the read voltages by searching for the optimal entropy value via a log-likelihood ratio(LLR)-aware cost function.Simulation results demonstrate the superiority of our proposed dynamic write-voltage design scheme and read-voltage optimization scheme with respect to the existing counterparts.展开更多
The characteristics of the extracted ion current have a significant impact on the design and testing of ion source performance.In this paper,a 2D in space and 3D in velocity space particle in cell(2D3V PIC)method is u...The characteristics of the extracted ion current have a significant impact on the design and testing of ion source performance.In this paper,a 2D in space and 3D in velocity space particle in cell(2D3V PIC)method is utilized to simulate plasma motion and ion extraction characteristics under various initial plasma velocity distributions and extraction voltages in a Cartesian coordinate system.The plasma density is of the order of 10^(15)m^(-3)-10^(16)m^(-3)and the extraction voltage is of the order of 100 V-1000 V.The study investigates the impact of various extraction voltages on the velocity and density distributions of electrons and positive ions,and analyzes the influence of different initial plasma velocity distributions on the extraction current.The simulation results reveal that the main reason for the variation of extraction current is the spacecharge force formed by the relative aggregation of positive and negative net charges.This lays the foundation for a deeper understanding of extraction beam characteristics.展开更多
Through tailoring interfacial chemistry,electrolyte engineering is a facile yet effective strategy for highperformance lithium(Li)metal batteries,where the solvation structure is critical for interfacial chemistry.Her...Through tailoring interfacial chemistry,electrolyte engineering is a facile yet effective strategy for highperformance lithium(Li)metal batteries,where the solvation structure is critical for interfacial chemistry.Herein,the effect of electrostatic interaction on regulating an anion-rich solvation is firstly proposed.The moderate electrostatic interaction between anion and solvent promotes anion to enter the solvation sheath,inducing stable solid electrolyte interphase with fast Li+transport kinetics on the anode.This asdesigned electrolyte exhibits excellent compatibility with Li metal anode(a Li deposition/stripping Coulombic efficiency of 99.3%)and high-voltage LiCoO_(2) cathode.Consequently,the 50μm-thin Li||high-loading LiCoO_(2) cells achieve significantly improved cycling performance under stringent conditions of high voltage over 4.5 V,lean electrolyte,and wide temperature range(-20 to 60℃).This work inspires a groundbreaking strategy to manipulate the solvation structure through regulating the interactions of solvent and anion for highperformance Li metal batteries.展开更多
High-voltage circuit breakers are the core equipment in power networks,and to a certain extent,are related to the safe and reliable operation of power systems.However,their core components are prone to mechanical faul...High-voltage circuit breakers are the core equipment in power networks,and to a certain extent,are related to the safe and reliable operation of power systems.However,their core components are prone to mechanical faults.This study proposes a component separation method to detect multiple mechanical faults in circuit breakers that can achieve online real-time monitoring.First,a model and strategy are presented for obtaining mechanical voiceprint signals from circuit breakers.Subsequently,the component separation method was used to decompose the voiceprint signals of multiple faults into individual component signals.Based on this,the recognition of the features of a single-fault voiceprint signal can be achieved.Finally,multiple faults in high-voltage circuit breakers were identified through an experimental simulation and verification of the circuit breaker voiceprint signals collected from the substation site.The research results indicate that the proposed method exhibits excellent performance for multiple mechanical faults,such as spring structures and loose internal components of circuit breakers.In addition,it provides a reference method for the real-time online monitoring of high-voltage circuit breakers.展开更多
Cathode materials that possess high output voltage,as well as those that can be mass-produced using facile techniques,are crucial for the advancement of aqueous zinc-ion battery(ZIBs)applications,Herein,we present for...Cathode materials that possess high output voltage,as well as those that can be mass-produced using facile techniques,are crucial for the advancement of aqueous zinc-ion battery(ZIBs)applications,Herein,we present for the first time a new porous K_(0.5)VOPO_(4)·1.5H_(2)O polyanionic cathode(P-KIVP)with high output voltage(above 1.2 V)that can be manufactured at room temperature using straightforward coprecipitation and etching techniques.The P-KVP cathode experiences anisotropic crystal plane expansion via a sequential solid-solution intercalation and phase co nversion pathway throughout the Zn^(2+)storage process,as confirmed by in-situ synchrotron X-ray diffraction and ex-situ X-ray photoelectron spectroscopy.Similar to other layered vanadium-based polyanionic materials,the P-KVP cathode experiences a progressive decline in voltage during the cycle,which is demonstrated to be caused by the irreversible conversion into amorphous VO_(x).By introducing a new electrolyte containing Zn(OTF)_(2) to a mixed triethyl phosphate and water solution,it is possible to impede this irreversible conversion and obtain a high output voltage and longer cycle life by forming a P-rich cathode electrolyte interface layer.As a proof-of-concept,the flexible fiber-shaped ZIBs based on modified electrolyte woven into a fabric watch band can power an electronic watch,highlighting the application potential of P-KVP cathode.展开更多
In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,t...In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,the characteristics of hollow-cathode discharge and electron beam characterization under pulsed high voltage drive are studied experimentally and discussed by discharge characteristics and analyses of waveform details,respectively.The validation experiments indicate that the pulsed high voltage supply significantly improves the frequency and stability of the discharge,which provides a new solution for the realization of a high-frequency,high-energy electron beam source.The peak current amplitude in the high-energy electron beam increases from 6.2 A to 79.6 A,which indicates the pulsed power mode significantly improves the electron beam performance.Besides,increasing the capacitance significantly affects the highcurrent,lower-energy electron beam more than the high-energy electron beam.展开更多
Developing supercapacitors(SCs)with long cycling life and wide operative voltage window is a significant topic in the field of aqueous electrolytes.Although the design of water in salt(WIS)electrolytes has pushed the ...Developing supercapacitors(SCs)with long cycling life and wide operative voltage window is a significant topic in the field of aqueous electrolytes.Although the design of water in salt(WIS)electrolytes has pushed the development of aqueous electrolytes to a new height,the WIS electrolytes with an operative voltage window of up to 2.5 V is still very scarce.Herein,in order to enrich the type of aqueous electrolyte with high operative voltage,tetramethylammonium trifluoromethanesulfonate(TMAOTf)based WIS electrolyte was used as a model to construct WIS based hybrid electrolyte with acetonitrile(ACN)co-solvent and LiTFSI co-solute.In view of the coordination effect of ACN and Lit on free water in TMAOTf based WIS electrolyte,the TMAt-Lit-AWIS electrolyte has the electrochemical stabilization window of up to 3.35 V.Further coupled with the commercial YP-50F electrodes,TMAt-Lit-AWIS based SCs exhibited wide operative voltage window(2.5 V),long cycling life(45,000 cycles)and good low-temperature performance(99.99%capacitance retention after 2000 cycles at20℃).The design of this hybrid electrolyte will enrich the types of aqueous hybrid electrolytes with long cycling life and wide operative voltage window.展开更多
A novel silicon controlled rectifier(SCR) with high holding voltage(Vh) for electrostatic discharge(ESD) protection is proposed and investigated in this paper. The proposed SCR obtains high Vhby adding a long N...A novel silicon controlled rectifier(SCR) with high holding voltage(Vh) for electrostatic discharge(ESD) protection is proposed and investigated in this paper. The proposed SCR obtains high Vhby adding a long N+ layer(LN+) and a long P+ layer(LP+), which divide the conventional low voltage trigger silicon controlled rectifier(LVTSCR) into two SCRs(SCR1: P+/Nwell/Pwell/N+ and SCR2: P+/LN+/LP+/N+) with a shared emitter. Under the low ESD current(IESD), the two SCRs are turned on at the same time to induce the first snapback with high V_h(V_(h1)). As the IESDincreases, the SCR2 will be turned off because of its low current gain. Therefore, the IESDwill flow through the longer SCR1 path, bypassing SCR2, which induces the second snapback with high V_h(V_(h2)). The anti-latch-up ability of the proposed SCR for ESD protection is proved by a dynamic TLP-like(Transmission Line Pulse-like) simulation. An optimized V_(h2) of 7.4 V with a maximum failure current(I_(t2)) of 14.7 m A/μm is obtained by the simulation.展开更多
基金financial support by National Natural Science Foundation(NNSF)of China(Nos.52202269,52002248,U23B2069,22309162)Shenzhen Science and Technology program(No.20220810155330003)+1 种基金Shenzhen Basic Research Project(No.JCYJ20190808163005631)Xiangjiang Lab(22XJ01007).
文摘Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In particular,an unstable cathode–electrolyte interphase(CEI)leads to successive electrolyte side reactions,transition metal leaching and rapid capacity decay,which tends to be exacerbated under high-voltage conditions.Therefore,constructing dense and stable CEIs are crucial for high-performance SIBs.This work reports localized high-concentration electrolyte by incorporating a highly oxidation-resistant sulfolane solvent with non-solvent diluent 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether,which exhibited excellent oxidative stability and was able to form thin,dense and homogeneous CEI.The excellent CEI enabled the O3-type layered oxide cathode NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)(NaNMF)to achieve stable cycling,with a capacity retention of 79.48%after 300 cycles at 1 C and 81.15%after 400 cycles at 2 C with a high charging voltage of 4.2 V.In addition,its nonflammable nature enhances the safety of SIBs.This work provides a viable pathway for the application of sulfolane-based electrolytes on SIBs and the design of next-generation high-voltage electrolytes.
基金supported by the National Natural Science Foundation of China(62305064)the Research Start-up Fund for Young Teachers of Fuzhou University(602592)+1 种基金the Young and Middleaged Teacher Education Research Project of Fujian Province(JAT220011)the Fujian Science&Technology Innovation Laboratory Optoelectronic Information of China(Grant No.2021ZZ124).
文摘Sb_(2)Se_(3)solar cells have achieved a power conversion efficiency(PCE)of over 10%.However,the serious open-circuit voltage deficit(VOC-deificit),induced by the hard-to-control crystal orientation and heterojunction interface reaction,limits the PCE of vapor transport deposition(VTD)processed Sb_(2)Se_(3)solar cells.To overcome the VOC-deficit problem of VTD processed Sb_(2)Se_(3)solar cells,herein,an in-situ bandgap regulation strategy is innovatively proposed to prepare a wide band gap Sb2(S,Se)3seed layer(WBSL)at CdS/Sb_(2)Se_(3)heterojunction interface to improve the PCE of Sb_(2)Se_(3)solar cells.The analysis results show that the introduced Sb2(S,Se)3seed layer can enhance the[001]orientation of Sb_(2)Se_(3)thin films,broaden the band gap of heterojunction interface,and realize a"Spike-like"conduction band alignment with ΔE_(c)=0.11 eV.In addition,thanks to the suppressed CdS/Sb_(2)Se_(3)interface reaction after WBSL application,the depletion region width of Sb_(2)Se_(3)solar cells is widened,and the quality of CdS/Sb_(2)Se_(3)interface and the carrier transporting performance of Sb_(2)Se_(3)solar cells are significantly improved as well.Moreover,the harmful Se vacancy defects near the front interface of Sb_(2)Se_(3)solar cells can be greatly diminished by WBSL.Finally,the PCE of Sb_(2)Se_(3)solar cells is improved from 7.0%to 7.6%;meanwhile the VOCis increased to 466 mV which is the highest value for the VTD derived Sb_(2)Se_(3)solar cells.This work will provide a valuable reference for the interface and orientation regulation of antimony-based chalcogenide solar cells.
文摘Aiming at the gas discharge problem in electric aircraft,this work studies the gas discharge characteristics at low-temperature sub-atmospheric pressure.A gas discharge shooting platform was built,and the discharge process was photographed by intensified charge-coupled device(ICCD).A two-dimensional axisymmetric model of needle-plate electrode gas discharge was established,and three sets of Helmholtz equations were used to solve the photoionization.The results show that under the same voltage,the electric field intensity in the discharge process increases first,then decreases and finally increases again.The discharge speed increases with the increase of altitude,and the electron density in the streamer decreases with the increase of altitude.The development speed of the streamer in the middle stage is higher than that in the early stage,and the speed increases more obviously with the increase of altitude.The development speed of the streamer in the later stage is lower than that in the middle stage,but with the increase of altitude,the development speed of the streamer in the later stage is higher than that in the middle stage.
基金supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018000052-73-01-001228)National Natural Science Foundation of China(No.11975263)Postgraduate Research and Practice Innovation Program of NUAA(No.xcxjh20231501)。
文摘The negative ion based neutral beam injector(NNBI)with a beam energy of 400 keV is one of the subsystems at the Comprehensive Research fAcility for Fusion Technology(CRAFT)in China.The distributed capacitance of the high-voltage components is an important basis for the design of surge suppression devices at CRAFT NNBI.This study conducted calculations of distributed capacitance for the key components,including the high-voltage deck,transmission line and isolation transformer in the power supply system using the finite element method.The relationship between the high-voltage deck(HVD)distributed capacitance and the distance from the wall is discussed.The differences in distributed capacitance and energy storage between noncoaxial and coaxial transmission lines are also debated.Finally,the capacitance between the primary and secondary windings of the-400 kV isolation transformer,as well as between the secondary winding and the oil tank casing,was calculated.
基金supported by the National Natural Science Foundation of China(U19A2018)the Natural Science Foundation of Hunan Province(2021JJ30651)the Postgraduate Scientific Research Innovation Project of Hunan Province(CX20230643).
文摘Single-crystalline Ni-rich cathodes can provide high energy density and capacity retention rates for lithium-ion batteries(LIBs).However,single-crystalline Ni-rich cathodes experience severe transition metal dissolution,irreversible phase transitions,and reduced structural stability during prolonged cycling at high voltage,which will significantly hinder their practical application.Herein,a Li4TeO5surface coating along with bulk Te-gradient doping strategy is proposed and developed to solve these issues for single-crystalline Ni-rich LiNi_(0.90)Co_(0.05)Mn_(0.05)O_(2)cathode(LTeO-1.0).It has been found that the bulk Te^(6+)gradient doping can lead to the formation of robust Te-O bonds that effectively inhibit H_(2)-H3 phase transformations and reinforce the lattice framework,and the in-situ Li4TeO5coating layer can act as a protective layer that suppresses the parasitic reactions and grain fragmentation.Besides,the modified material exhibits a higher Young's modulus,which will be conducive to maintaining significant structural and electrochemical stability under high-voltage conditions,Especially,the LTeO-1.0 electrode shows the improved Li^(+)diffusion kinetics and thermodynamic stability as well as high capacity retention of 95.83%and 82.12%after 200 cycles at the cut-off voltage of 4.3 and 4,5 V.Therefore,the efficacious dualmodification strategy will definitely contribute to enhancing the structural and electrochemical stability of single-crystalline Ni-rich cathodes and developing their application in LIBs.
基金partly supported by the National Key R&D Program of China(2022YFB4101602)the National Natural Science Foundation of China(22078052)the Fundamental Research Funds for the Central Universities(DUT22ZD207)。
文摘Compared with organic electrolytes,aqueous electrolytes exhibit significantly higher ionic conductivity and possess inherent safety features,showcasing unique advantages in supercapacitors.However,challenges remain for low-salt aqueous electrolytes operating at high voltage and low temperature.Herein,we report a low-salt(0.87 m,m means mol kg^(-1))'salt in dimethyl sulfoxide/water'hybrid electrolyte with non-flammability via hybridizing aqueous electrolyte with an organic co-solvent of dimethyl sulfoxide(hydrogen bond acceptor).As a result,the 0.87 m hybrid electrolyte exhibits enhanced electrochemical stability,a freezing temperature below-50℃,and an outstanding ionic conductivity of 0.52mS cm~(-1)at-50℃.Dimethyl sulfoxide can anchor water molecules through intermolecular hydrogen bond interaction,effectively reinforcing the stability of water in the hybrid electrolyte.Furthermore,the interaction between dimethyl sulfoxide and water molecules diminishes the involvement of water in the generation of ordered ice crystals,finally facilitating the low-temperature performance of the hybrid electrolyte.When paired with the 0.87 m'salt in dimethyl sulfoxide/water'hybrid electrolyte,the symmetric supercapacitor presents a 2.0 V high operating voltage at 25℃,and can operate stably at-50℃.Importantly,the suppressed electrochemical reaction of water at-50℃further leads to the symmetric supercapacitor operated at a higher voltage of 2.6 V.This modification strategy opens an effective avenue to develop low-salt electrolytes for high-voltage and low-temperature aqueous supercapacitors.
基金This work was supported by the National Key R&D Program of China(2021YFB2402002)the Beijing Natural Science Foundation(L223013)the Chongqing Automobile Collaborative Innovation Centre(No.2022CDJDX-004).
文摘Battery management systems(BMSs) play a vital role in ensuring efficient and reliable operations of lithium-ion batteries.The main function of the BMSs is to estimate battery states and diagnose battery health using battery open-circuit voltage(OCV).However,acquiring the complete OCV data online can be a challenging endeavor due to the time-consuming measurement process or the need for specific operating conditions required by OCV estimation models.In addressing these concerns,this study introduces a deep neural network-combined framework for accurate and robust OCV estimation,utilizing partial daily charging data.We incorporate a generative deep learning model to extract aging-related features from data and generate high-fidelity OCV curves.Correlation analysis is employed to identify the optimal partial charging data,optimizing the OCV estimation precision while preserving exceptional flexibility.The validation results,using data from nickel-cobalt-magnesium(NCM) batteries,illustrate the accurate estimation of the complete OCV-capacity curve,with an average root mean square errors(RMSE) of less than 3 mAh.Achieving this level of precision for OCV estimation requires only around 50 s collection of partial charging data.Further validations on diverse battery types operating under various conditions confirm the effectiveness of our proposed method.Additional cases of precise health diagnosis based on OCV highlight the significance of conducting online OCV estimation.Our method provides a flexible approach to achieve complete OCV estimation and holds promise for generalization to other tasks in BMSs.
基金supported by the Shandong Provincial Natural Science Foundation,China(No.ZR2019MEM014)。
文摘The electrolyte directly contacts the essential parts of a lithium-ion battery,and as a result,the electrochemical properties of the electrolyte have a significant impact on the voltage platform,charge discharge capacity,energy density,service life,and rate discharge performance.By raising the voltage at the charge/discharge plateau,the energy density of the battery is increased.However,this causes transition metal dissolution,irreversible phase changes of the cathode active material,and parasitic electrolyte oxidation reactions.This article presents an overview of these concerns to provide a clear explanation of the issues involved in the development of electrolytes for high-voltage lithium-ion batteries.Additionally,solidstate electrolytes enable various applications and will likely have an impact on the development of batteries with high energy densities.It is necessary to improve the high-voltage performance of electrolytes by creating solvents with high thermal stabilities and high voltage resistance and additives with superior film forming performance,multifunctional capabilities,and stable lithium salts.To offer suggestions for the future development of high-energy lithium-ion batteries,we conclude by offering our own opinions and insights on the current development of lithium-ion batteries.
基金funded by the National Natural Science Foundation of China(Grant Nos.22279092 and 5202780089).
文摘Li-rich layered oxide(LRLO)cathodes have been regarded as promising candidates for next-generation Li-ion batteries due to their exceptionally high energy density,which combines cationic and anionic redox activities.However,continuous voltage decay during cycling remains the primary obstacle for practical applications,which has yet to be fundamentally addressed.It is widely acknowledged that voltage decay originates from the irreversible migration of transition metal ions,which usually further exacerbates structural evolution and aggravates the irreversible oxygen redox reactions.Recently,constructing O2-type structure has been considered one of the most promising approaches for inhibiting voltage decay.In this review,the relationship between voltage decay and structural evolution is systematically elucidated.Strategies to suppress voltage decay are systematically summarized.Additionally,the design of O2-type structure and the corresponding mechanism of suppressing voltage decay are comprehensively discussed.Unfortunately,the reported O2-type LRLO cathodes still exhibit partially disordered structure with extended cycles.Herein,the factors that may cause the irreversible transition metal migrations in O2-type LRLO materials are also explored,while the perspectives and challenges for designing high-performance O2-type LRLO cathodes without voltage decay are proposed.
基金supported by grants from the National Natural Science Foundation of China(No.22272055)multifunctional platform for innovation of ECNU(EPR).
文摘In-situ XRD,^(31)P NMR and ^(23)Na NMR were used to analyze the interaction behavior of Na_(3)V_(2)(PO_(4))_(3) at low voltage,and then a new intercalation model was proposed.During the transition from Na_(3)V_(2)(PO_(4))_(3) to Na_(4)V_(2)(PO_(4))_(3),Na ions insert into M1,M2 and M3 sites simultaneously.Afterwards,during the transition of Na_(4)V_(2)(PO_(4))_(3)to Na_(5)V_(2)(PO_(4))_(3),Na ions mainly insert into M3 site.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2004AA52930)the Fundamental Research Funds for the Central Universities(Grant No.2014JBM109)
文摘The charge quantity of small particulates such as PM2.5 plays a key role in the collection efficiency of an electrostatic precipitator(ESP). Under a single electrostatic voltage, it is difficult to charge and absorb small particulates. A new method of superimposing an alternative voltage on the electrostatic voltage is provided in this paper. Characteristics of small particulates are analyzed under alternative and electrostatic voltages. It is demonstrated that an alternative voltage can significantly improve the collection efficiency in three aspects: preventing anti-corona, increasing the charge quantity of small particulates, and increasing the median particulate size by electric agglomeration. In addition, practical usage with the superposition of alternative voltage is provided, and the results are in agreement with the theoretical analysis.
基金Project supported by the State Key Program of the National Natural Science Foundation of China (Grant No. 60836004)Hunan Provincial Innovation Foundation for Postgraduates,China (Grant No. CX2011B026)
文摘Using computer-aided design three-dimensional simulation technology,the supply voltage scaled dependency of the recovery of single event upset and charge collection in static random-access memory cells are investigated.It reveals that the recovery linear energy transfer threshold decreases with the supply voltage reducing,which is quite attractive for dynamic voltage scaling and subthreshold circuit radiation-hardened design.Additionally,the effect of supply voltage on charge collection is also investigated.It is concluded that the supply voltage mainly affects the bipolar gain of the parasitical bipolar junction transistor(BJT) and the existence of the source plays an important role in supply voltage variation.
基金supported in part by the NSF of China under Grants 62322106,62071131,U2001203,61871136the Guangdong Basic and Applied Basic Research Foundation under Grant 2022B1515020086+1 种基金the International Collaborative Research Program of Guangdong Science and Technology Department under Grant 2022A0505050070the Industrial R&D Project of Haoyang Electronic Co.,Ltd.under Grant 2022440002001494.
文摘To mitigate the impact of noise and inter-ference on multi-level-cell(MLC)flash memory with the use of low-density parity-check(LDPC)codes,we propose a dynamic write-voltage design scheme con-sidering the asymmetric property of raw bit error rate(RBER),which can obtain the optimal write voltage by minimizing a cost function.In order to further improve the decoding performance of flash memory,we put forward a low-complexity entropy-based read-voltage optimization scheme,which derives the read voltages by searching for the optimal entropy value via a log-likelihood ratio(LLR)-aware cost function.Simulation results demonstrate the superiority of our proposed dynamic write-voltage design scheme and read-voltage optimization scheme with respect to the existing counterparts.
基金Project supported by Presidential Foundation of CAEP (Grant No.YZJJZQ2022016)the National Natural Science Foundation of China (Grant No.52207177)。
文摘The characteristics of the extracted ion current have a significant impact on the design and testing of ion source performance.In this paper,a 2D in space and 3D in velocity space particle in cell(2D3V PIC)method is utilized to simulate plasma motion and ion extraction characteristics under various initial plasma velocity distributions and extraction voltages in a Cartesian coordinate system.The plasma density is of the order of 10^(15)m^(-3)-10^(16)m^(-3)and the extraction voltage is of the order of 100 V-1000 V.The study investigates the impact of various extraction voltages on the velocity and density distributions of electrons and positive ions,and analyzes the influence of different initial plasma velocity distributions on the extraction current.The simulation results reveal that the main reason for the variation of extraction current is the spacecharge force formed by the relative aggregation of positive and negative net charges.This lays the foundation for a deeper understanding of extraction beam characteristics.
基金supported by National Nature Science Foundation of China(No.51872157 and No.52072208)National Key R&D Program of China 2021YFA1202802Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01N111)。
文摘Through tailoring interfacial chemistry,electrolyte engineering is a facile yet effective strategy for highperformance lithium(Li)metal batteries,where the solvation structure is critical for interfacial chemistry.Herein,the effect of electrostatic interaction on regulating an anion-rich solvation is firstly proposed.The moderate electrostatic interaction between anion and solvent promotes anion to enter the solvation sheath,inducing stable solid electrolyte interphase with fast Li+transport kinetics on the anode.This asdesigned electrolyte exhibits excellent compatibility with Li metal anode(a Li deposition/stripping Coulombic efficiency of 99.3%)and high-voltage LiCoO_(2) cathode.Consequently,the 50μm-thin Li||high-loading LiCoO_(2) cells achieve significantly improved cycling performance under stringent conditions of high voltage over 4.5 V,lean electrolyte,and wide temperature range(-20 to 60℃).This work inspires a groundbreaking strategy to manipulate the solvation structure through regulating the interactions of solvent and anion for highperformance Li metal batteries.
基金supported by the State Key Laboratory of Technology and Equipment for Defense against Power System Operational Risks(No.SGNR0000KJJS2302137)the National Natural Science Foundation of China(Grant No.62203248)the Natural Science Foundation of Shandong Province(Grant No.ZR2020ME194).
文摘High-voltage circuit breakers are the core equipment in power networks,and to a certain extent,are related to the safe and reliable operation of power systems.However,their core components are prone to mechanical faults.This study proposes a component separation method to detect multiple mechanical faults in circuit breakers that can achieve online real-time monitoring.First,a model and strategy are presented for obtaining mechanical voiceprint signals from circuit breakers.Subsequently,the component separation method was used to decompose the voiceprint signals of multiple faults into individual component signals.Based on this,the recognition of the features of a single-fault voiceprint signal can be achieved.Finally,multiple faults in high-voltage circuit breakers were identified through an experimental simulation and verification of the circuit breaker voiceprint signals collected from the substation site.The research results indicate that the proposed method exhibits excellent performance for multiple mechanical faults,such as spring structures and loose internal components of circuit breakers.In addition,it provides a reference method for the real-time online monitoring of high-voltage circuit breakers.
基金financially supported by National Natural Science Foundation of China(No.52102270)the Natural Science Foundation of Shandong Province of China(ZR2021QE002)+1 种基金the support from the Institute startup grant from Qingdao Universitythe Shandong Center for Engineered Nonwovens(SCEN)。
文摘Cathode materials that possess high output voltage,as well as those that can be mass-produced using facile techniques,are crucial for the advancement of aqueous zinc-ion battery(ZIBs)applications,Herein,we present for the first time a new porous K_(0.5)VOPO_(4)·1.5H_(2)O polyanionic cathode(P-KIVP)with high output voltage(above 1.2 V)that can be manufactured at room temperature using straightforward coprecipitation and etching techniques.The P-KVP cathode experiences anisotropic crystal plane expansion via a sequential solid-solution intercalation and phase co nversion pathway throughout the Zn^(2+)storage process,as confirmed by in-situ synchrotron X-ray diffraction and ex-situ X-ray photoelectron spectroscopy.Similar to other layered vanadium-based polyanionic materials,the P-KVP cathode experiences a progressive decline in voltage during the cycle,which is demonstrated to be caused by the irreversible conversion into amorphous VO_(x).By introducing a new electrolyte containing Zn(OTF)_(2) to a mixed triethyl phosphate and water solution,it is possible to impede this irreversible conversion and obtain a high output voltage and longer cycle life by forming a P-rich cathode electrolyte interface layer.As a proof-of-concept,the flexible fiber-shaped ZIBs based on modified electrolyte woven into a fabric watch band can power an electronic watch,highlighting the application potential of P-KVP cathode.
基金supported by National Natural Science Foundation of China(No.12102099)the National Key R&D Program of China(No.2021YFC2202700)the Outstanding Academic Leader Project of Shanghai(Youth)(No.23XD1421700),respectively。
文摘In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,the characteristics of hollow-cathode discharge and electron beam characterization under pulsed high voltage drive are studied experimentally and discussed by discharge characteristics and analyses of waveform details,respectively.The validation experiments indicate that the pulsed high voltage supply significantly improves the frequency and stability of the discharge,which provides a new solution for the realization of a high-frequency,high-energy electron beam source.The peak current amplitude in the high-energy electron beam increases from 6.2 A to 79.6 A,which indicates the pulsed power mode significantly improves the electron beam performance.Besides,increasing the capacitance significantly affects the highcurrent,lower-energy electron beam more than the high-energy electron beam.
基金supported by the Longkou City Science and Technology Research and Development Plan(No.2020KJJH061).
文摘Developing supercapacitors(SCs)with long cycling life and wide operative voltage window is a significant topic in the field of aqueous electrolytes.Although the design of water in salt(WIS)electrolytes has pushed the development of aqueous electrolytes to a new height,the WIS electrolytes with an operative voltage window of up to 2.5 V is still very scarce.Herein,in order to enrich the type of aqueous electrolyte with high operative voltage,tetramethylammonium trifluoromethanesulfonate(TMAOTf)based WIS electrolyte was used as a model to construct WIS based hybrid electrolyte with acetonitrile(ACN)co-solvent and LiTFSI co-solute.In view of the coordination effect of ACN and Lit on free water in TMAOTf based WIS electrolyte,the TMAt-Lit-AWIS electrolyte has the electrochemical stabilization window of up to 3.35 V.Further coupled with the commercial YP-50F electrodes,TMAt-Lit-AWIS based SCs exhibited wide operative voltage window(2.5 V),long cycling life(45,000 cycles)and good low-temperature performance(99.99%capacitance retention after 2000 cycles at20℃).The design of this hybrid electrolyte will enrich the types of aqueous hybrid electrolytes with long cycling life and wide operative voltage window.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61376080 and 61674027)the Natural Science Foundation of Guangdong Province,China(Grant Nos.2014A030313736 and 2016A030311022)
文摘A novel silicon controlled rectifier(SCR) with high holding voltage(Vh) for electrostatic discharge(ESD) protection is proposed and investigated in this paper. The proposed SCR obtains high Vhby adding a long N+ layer(LN+) and a long P+ layer(LP+), which divide the conventional low voltage trigger silicon controlled rectifier(LVTSCR) into two SCRs(SCR1: P+/Nwell/Pwell/N+ and SCR2: P+/LN+/LP+/N+) with a shared emitter. Under the low ESD current(IESD), the two SCRs are turned on at the same time to induce the first snapback with high V_h(V_(h1)). As the IESDincreases, the SCR2 will be turned off because of its low current gain. Therefore, the IESDwill flow through the longer SCR1 path, bypassing SCR2, which induces the second snapback with high V_h(V_(h2)). The anti-latch-up ability of the proposed SCR for ESD protection is proved by a dynamic TLP-like(Transmission Line Pulse-like) simulation. An optimized V_(h2) of 7.4 V with a maximum failure current(I_(t2)) of 14.7 m A/μm is obtained by the simulation.