In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with ...In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.展开更多
With the urgent need to resolve complex behaviors in nonlinear evolution equations,this study makes a contribution by establishing the local existence of solutions for Cauchy problems associated with equations of mixe...With the urgent need to resolve complex behaviors in nonlinear evolution equations,this study makes a contribution by establishing the local existence of solutions for Cauchy problems associated with equations of mixed types.Our primary contribution is the establishment of solution existence,illuminating the dynamics of these complex equations.To tackle this challenging problem,we construct an approximate solution sequence and apply the contraction mapping principle to rigorously prove local solution existence.Our results significantly advance the understanding of nonlinear evolution equations of mixed types.Furthermore,they provide a versatile,powerful approach for tackling analogous challenges across physics,engineering,and applied mathematics,making this work a valuable reference for researchers in these fields.展开更多
This paper deals with quasilinear elliptic equations of singular growth like-Δu-uΔ(u^(2))=a(x)u^(-1).We establish the existence of positive solutions for general a(x)∈L^(p)(Ω),p>2,whereΩis a bounded domain inℝ...This paper deals with quasilinear elliptic equations of singular growth like-Δu-uΔ(u^(2))=a(x)u^(-1).We establish the existence of positive solutions for general a(x)∈L^(p)(Ω),p>2,whereΩis a bounded domain inℝ^(N)with N≥1.展开更多
A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems i...A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.展开更多
Many practical problems, such as those from electronic engineering, mechanicalengineering, ecological engineering, aerospace engineering and so on, need to bedescribed by dynamic equations on time scales, so it is imp...Many practical problems, such as those from electronic engineering, mechanicalengineering, ecological engineering, aerospace engineering and so on, need to bedescribed by dynamic equations on time scales, so it is important in theory andpractical significance to study these equations. In this paper, the oscillation andasymptotic behavior of third-order nonlinear neutral delay dynamic equations ontime scales are studied by using generalized Riccati transformation technique, integralaveraging methods and comparison theorems. The main purpose of this paperis to establish some new oscillation criteria for such dynamic equations. The newKamenev criteria and Philos criteria are given, and an example is considered toillustrate our main results.展开更多
The relationship between the technique by state- dependent Riccati equations (SDRE) and Hamilton-Jacobi-lsaacs (HJI) equations for nonlinear H∞ control design is investigated. By establishing the Lyapunov matrix ...The relationship between the technique by state- dependent Riccati equations (SDRE) and Hamilton-Jacobi-lsaacs (HJI) equations for nonlinear H∞ control design is investigated. By establishing the Lyapunov matrix equations for partial derivates of the solution of the SDREs and introducing symmetry measure for some related matrices, a method is proposed for examining whether the SDRE method admits a global optimal control equiva- lent to that solved by the HJI equation method. Two examples with simulation are given to illustrate the method is effective.展开更多
An idea of relaxing the effect of delay when computing the Runge-Kutta stages in the current step and a class of two-step continuity Runge-Kutta methods (TSCRK) is presented. Their construction, their order conditio...An idea of relaxing the effect of delay when computing the Runge-Kutta stages in the current step and a class of two-step continuity Runge-Kutta methods (TSCRK) is presented. Their construction, their order conditions and their convergence are studied. The two-step continuity Runge-Kutta methods possess good numerical stability properties and higher stage-order, and keep the explicit process of computing the Runge-Kutta stages. The numerical experiments show that the TSCRK methods are efficient.展开更多
This paper presents nonlinear ordinary differential equations (ODES) of the heavier pellets movement for two phase flow, which actually represent a system of equations. The usual methods of solution such as Runge -Kut...This paper presents nonlinear ordinary differential equations (ODES) of the heavier pellets movement for two phase flow, which actually represent a system of equations. The usual methods of solution such as Runge -Kutta method and it's datum results are discussed. This paper solves ODES of general form using variable mesh-length, linearizing the nonlinear terms by finite analysis method, fuilding an iteration sequence, and amending the nonlinear terms by iteration . The conditions of convergent operation of iteration solution is checked. The movement orbit and velocity of the pellets are calculated. Analysis of research results and it's application examples are illustrated.展开更多
In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introduc...In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introducing only one additional evaluation of the function in each step.Furthermore,some new efficient methods with a higher-order of convergence are obtained by using only a single matrix inversion in each iteration.Analyses of convergence properties and computational efficiency of these new methods are made and testified by several numerical problems.By comparison,the new schemes are more efficient than the corresponding existing ones,particularly for large problem sizes.展开更多
The static output feedback H∞ control is explored for a class of nonlinear singular system with norm-bounded uncertainty. On certain suppose, the zero solution asymptotically stability is analyzed by means of Lyapuno...The static output feedback H∞ control is explored for a class of nonlinear singular system with norm-bounded uncertainty. On certain suppose, the zero solution asymptotically stability is analyzed by means of Lyapunov function and Lyapunov stability theory. Based on which, a sufficient condition is presented such that the system is zero solution asymptotically stable and has H∞ norm constraint γ. Then, the static output feedback H∞ controller is designed to guarantee the resulting closed-loop system has the same performance. Finally, an example proves the effectiveness of the conclusion.展开更多
The global robust output regulation problem of the singular nonlinear system is investigated. Motivated by the input-output linearization of the normal affine nonlinear system, a global diffeomorphism map is designed ...The global robust output regulation problem of the singular nonlinear system is investigated. Motivated by the input-output linearization of the normal affine nonlinear system, a global diffeomorphism map is designed under the assumption that the singular nonlinear system has a strong relative degree. The global diffeomorphism map transfers the singular nonlinear system into a new singular nonlinear system with a special structure. Attaching an internal model to the new singular nonlinear system yields an augmented singular nonlinear system and the global robust stabilization solution of the augmented system implies the global robust output regulation solution of the original singular nonlinear system. Then the global stabilization problem is solved by some appropriate assumptions and the solvability conditions of the global robust output regulation problem are established. Finally, a simulation example is given to illustrate the design approach.展开更多
On the basis of the quasi-geostrophic vorticity equation,theoretical research has been down upon the evolution of the amplitude of solitary Rossby waves employing the perturbation method,and come to the conclusion tha...On the basis of the quasi-geostrophic vorticity equation,theoretical research has been down upon the evolution of the amplitude of solitary Rossby waves employing the perturbation method,and come to the conclusion that the evolution of the amplitude satisfies the variable coefficient Korteweg-de Vries(KdV) equation.展开更多
Composite nonlinear feedback (CNF) control techniquefor tracking control problems is extended to the output regulationproblem of singular linear systems with input saturation. A statefeedback CNF control law and an ...Composite nonlinear feedback (CNF) control techniquefor tracking control problems is extended to the output regulationproblem of singular linear systems with input saturation. A statefeedback CNF control law and an output feedback CNF controllaw are constructed respectively for the output regulation problemof singular linear systems with input saturation. It is shown thatthe output regulation problem by CNF control is solvable underthe same solvability conditions of the output regulation problemby linear control. However, with the virtue of the CNF control, thetransient performance of the closed-loop system can be improvedby carefully designing the linear part and the nonlinear part of theCNF control law. The design procedure and the improvement ofthe transient performance of the closed-loop system are illustratedwith a numerical simulation.展开更多
By using the extended F-expansion method, the exact solutions,including periodic wave solutions expressed by Jacobi elliptic functions, for (2+1)-dimensional nonlinear Schrdinger equation are derived. In the limit c...By using the extended F-expansion method, the exact solutions,including periodic wave solutions expressed by Jacobi elliptic functions, for (2+1)-dimensional nonlinear Schrdinger equation are derived. In the limit cases, the solitary wave solutions and the other type of traveling wave solutions for the system are obtained.展开更多
基金Supported by the National Natural Science Foundation of China(11671403,11671236,12101192)Henan Provincial General Natural Science Foundation Project(232300420113)。
文摘In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.
基金Supported by the National Natural Science Foundation of China(12201368,62376252)Key Project of Natural Science Foundation of Zhejiang Province(LZ22F030003)Zhejiang Province Leading Geese Plan(2024C02G1123882,2024C01SA100795).
文摘With the urgent need to resolve complex behaviors in nonlinear evolution equations,this study makes a contribution by establishing the local existence of solutions for Cauchy problems associated with equations of mixed types.Our primary contribution is the establishment of solution existence,illuminating the dynamics of these complex equations.To tackle this challenging problem,we construct an approximate solution sequence and apply the contraction mapping principle to rigorously prove local solution existence.Our results significantly advance the understanding of nonlinear evolution equations of mixed types.Furthermore,they provide a versatile,powerful approach for tackling analogous challenges across physics,engineering,and applied mathematics,making this work a valuable reference for researchers in these fields.
基金Supported by National Science Foundation of China(11971027,12171497)。
文摘This paper deals with quasilinear elliptic equations of singular growth like-Δu-uΔ(u^(2))=a(x)u^(-1).We establish the existence of positive solutions for general a(x)∈L^(p)(Ω),p>2,whereΩis a bounded domain inℝ^(N)with N≥1.
文摘A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.
文摘Many practical problems, such as those from electronic engineering, mechanicalengineering, ecological engineering, aerospace engineering and so on, need to bedescribed by dynamic equations on time scales, so it is important in theory andpractical significance to study these equations. In this paper, the oscillation andasymptotic behavior of third-order nonlinear neutral delay dynamic equations ontime scales are studied by using generalized Riccati transformation technique, integralaveraging methods and comparison theorems. The main purpose of this paperis to establish some new oscillation criteria for such dynamic equations. The newKamenev criteria and Philos criteria are given, and an example is considered toillustrate our main results.
基金supported by the National Natural Science Foundation of China(60874114)
文摘The relationship between the technique by state- dependent Riccati equations (SDRE) and Hamilton-Jacobi-lsaacs (HJI) equations for nonlinear H∞ control design is investigated. By establishing the Lyapunov matrix equations for partial derivates of the solution of the SDREs and introducing symmetry measure for some related matrices, a method is proposed for examining whether the SDRE method admits a global optimal control equiva- lent to that solved by the HJI equation method. Two examples with simulation are given to illustrate the method is effective.
文摘An idea of relaxing the effect of delay when computing the Runge-Kutta stages in the current step and a class of two-step continuity Runge-Kutta methods (TSCRK) is presented. Their construction, their order conditions and their convergence are studied. The two-step continuity Runge-Kutta methods possess good numerical stability properties and higher stage-order, and keep the explicit process of computing the Runge-Kutta stages. The numerical experiments show that the TSCRK methods are efficient.
文摘This paper presents nonlinear ordinary differential equations (ODES) of the heavier pellets movement for two phase flow, which actually represent a system of equations. The usual methods of solution such as Runge -Kutta method and it's datum results are discussed. This paper solves ODES of general form using variable mesh-length, linearizing the nonlinear terms by finite analysis method, fuilding an iteration sequence, and amending the nonlinear terms by iteration . The conditions of convergent operation of iteration solution is checked. The movement orbit and velocity of the pellets are calculated. Analysis of research results and it's application examples are illustrated.
基金Supported by the National Natural Science Foundation of China(12061048)NSF of Jiangxi Province(20232BAB201026,20232BAB201018)。
文摘In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introducing only one additional evaluation of the function in each step.Furthermore,some new efficient methods with a higher-order of convergence are obtained by using only a single matrix inversion in each iteration.Analyses of convergence properties and computational efficiency of these new methods are made and testified by several numerical problems.By comparison,the new schemes are more efficient than the corresponding existing ones,particularly for large problem sizes.
基金supported by the National Natural Science Foundation of China (60574011)
文摘The static output feedback H∞ control is explored for a class of nonlinear singular system with norm-bounded uncertainty. On certain suppose, the zero solution asymptotically stability is analyzed by means of Lyapunov function and Lyapunov stability theory. Based on which, a sufficient condition is presented such that the system is zero solution asymptotically stable and has H∞ norm constraint γ. Then, the static output feedback H∞ controller is designed to guarantee the resulting closed-loop system has the same performance. Finally, an example proves the effectiveness of the conclusion.
基金supported by the National Natural Science Foundation of China(61374035)the Fundamental Research Funds for the Central Universities(20720150177)
文摘The global robust output regulation problem of the singular nonlinear system is investigated. Motivated by the input-output linearization of the normal affine nonlinear system, a global diffeomorphism map is designed under the assumption that the singular nonlinear system has a strong relative degree. The global diffeomorphism map transfers the singular nonlinear system into a new singular nonlinear system with a special structure. Attaching an internal model to the new singular nonlinear system yields an augmented singular nonlinear system and the global robust stabilization solution of the augmented system implies the global robust output regulation solution of the original singular nonlinear system. Then the global stabilization problem is solved by some appropriate assumptions and the solvability conditions of the global robust output regulation problem are established. Finally, a simulation example is given to illustrate the design approach.
基金supported by the National Natural Science Foundation of China(61370136)the Hainan Province Science and Technology Cooperation Fund Project(KJHZ2015-36)the Hainan Province Introduced and Integrated Demonstration Projects(YJJC20130009)
基金supported by the Meteorological Special Project of China(GYHY200806005)the National Natural Sciences Foundation of China(40805028,40675039,40575036)the Key Technologies R&D Program of China(2009BAC51B04)
文摘On the basis of the quasi-geostrophic vorticity equation,theoretical research has been down upon the evolution of the amplitude of solitary Rossby waves employing the perturbation method,and come to the conclusion that the evolution of the amplitude satisfies the variable coefficient Korteweg-de Vries(KdV) equation.
基金supported by the National Natural Science Foundation of China(61374035)
文摘Composite nonlinear feedback (CNF) control techniquefor tracking control problems is extended to the output regulationproblem of singular linear systems with input saturation. A statefeedback CNF control law and an output feedback CNF controllaw are constructed respectively for the output regulation problemof singular linear systems with input saturation. It is shown thatthe output regulation problem by CNF control is solvable underthe same solvability conditions of the output regulation problemby linear control. However, with the virtue of the CNF control, thetransient performance of the closed-loop system can be improvedby carefully designing the linear part and the nonlinear part of theCNF control law. The design procedure and the improvement ofthe transient performance of the closed-loop system are illustratedwith a numerical simulation.
文摘By using the extended F-expansion method, the exact solutions,including periodic wave solutions expressed by Jacobi elliptic functions, for (2+1)-dimensional nonlinear Schrdinger equation are derived. In the limit cases, the solitary wave solutions and the other type of traveling wave solutions for the system are obtained.