In this study,composite films consisting of polylactic acid(PLA),ethyl cellulose(EC),and zein were prepared by solution casting method,and their performance and application in chilled fresh meat preservation were inve...In this study,composite films consisting of polylactic acid(PLA),ethyl cellulose(EC),and zein were prepared by solution casting method,and their performance and application in chilled fresh meat preservation were investigated.The results showed that the three materials had satisfactory compatibility in the composite film.Addition of EC and zein effectively improved the mechanical properties,thermodynamic properties,surface hydrophilicity,oxygen permeability,and degradation properties of PLA films.When the ratio of PLA to EC was 3:7,the tensile strength and elongation at break reached maximum values of 16.6 MPa and 30.5%,respectively.Moreover,under different conditions,the composite film exhibited better degradability than the PLA film.The composite film with a 3:7 ratio of PLA to EC had the best performance,with a degradation rate of 21.75%after 84 days.Chilled fresh meat wrapped with the composite film showed significantly improved antioxidant,antibacterial,and water-holding properties.展开更多
This review paper explores the potential of oil palm biomass as a valuable cellulose source for the production of nitrocellulose-based propellants,contributing to the green revolution and sustainable energy solutions....This review paper explores the potential of oil palm biomass as a valuable cellulose source for the production of nitrocellulose-based propellants,contributing to the green revolution and sustainable energy solutions.It highlights the availability of the corresponding biomass in Malaysia and in line with global studies,the chemical compositions,as well as a brief description of current technologies for converting biomass of oil palm into value added products specifically cellulose.Steps to achieve maximum utilization of biomass from oil palm industry for cellulose production and prospective source for nitrocellulose-based propellant are also proposed.The methodology section outlines the pretreatment of lignocellulosic fibres,cellulose extraction,and nitrocellulose production processes.Overall,the review underscores the prospective of palm oil biomass as a sustainable cellulose source for propellant manufacturing,while acknowledging the need for further research and advancements in the field.展开更多
Twenty-nine facultative anaerobic cellulose-degrading bacteria were isolated from soil, rumen fluid, rumen residues and diet of dairy cow. Based on 16 Sr DNA analysis by BLAST algorithm method, the results showed that...Twenty-nine facultative anaerobic cellulose-degrading bacteria were isolated from soil, rumen fluid, rumen residues and diet of dairy cow. Based on 16 Sr DNA analysis by BLAST algorithm method, the results showed that most of the strains were Bacillus genera, and six of the 29 strains were bigger than 10 mm of diameter of clear zones. For them, two strains were isolated from rumen fluid(L5 and L7) and other two were isolated from rumen residue(N5 and N9), while others were isolated from soil(T1) and diet(S6), respectively. Strains from rumen fluid and residue had higher activities of FPCase and CMCase, but lower β-glucosidases.展开更多
The quantum bacterial foraging optimization(QBFO)algorithm has the characteristics of strong robustness and global searching ability. In the classical QBFO algorithm, the rotation angle updated by the rotation gate is...The quantum bacterial foraging optimization(QBFO)algorithm has the characteristics of strong robustness and global searching ability. In the classical QBFO algorithm, the rotation angle updated by the rotation gate is discrete and constant,which cannot affect the situation of the solution space and limit the diversity of bacterial population. In this paper, an improved QBFO(IQBFO) algorithm is proposed, which can adaptively make the quantum rotation angle continuously updated and enhance the global search ability. In the initialization process, the modified probability of the optimal rotation angle is introduced to avoid the existence of invariant solutions. The modified operator of probability amplitude is adopted to further increase the population diversity.The tests based on benchmark functions verify the effectiveness of the proposed algorithm. Moreover, compared with the integerorder PID controller, the fractional-order proportion integration differentiation(PID) controller increases the complexity of the system with better flexibility and robustness. Thus the fractional-order PID controller is applied to the servo system. The tuning results of PID parameters of the fractional-order servo system show that the proposed algorithm has a good performance in tuning the PID parameters of the fractional-order servo system.展开更多
The utilization of biomimicry of bacterial foraging strategy was considered to develop an adaptive control strategy for mobile robot, and a bacterial foraging approach was proposed for robot path planning. In the prop...The utilization of biomimicry of bacterial foraging strategy was considered to develop an adaptive control strategy for mobile robot, and a bacterial foraging approach was proposed for robot path planning. In the proposed model, robot that mimics the behavior of bacteria is able to determine an optimal collision-free path between a start and a target point in the environment surrounded by obstacles. In the simulation, two test scenarios of static environment with different number obstacles were adopted to evaluate the performance of the proposed method. Simulation results show that the robot which reflects the bacterial foraging behavior can adapt to complex environments in the planned trajectories with both satisfactory accuracy and stability.展开更多
The kinetics of reductive leaching of manganese from a low-grade manganese oxide ore were studied using cellulose as reductant in dilute sulfuric acid medium.It was found that when the stirring speed was higher than 2...The kinetics of reductive leaching of manganese from a low-grade manganese oxide ore were studied using cellulose as reductant in dilute sulfuric acid medium.It was found that when the stirring speed was higher than 200 r/min,the effect of gas film diffusion on manganese extraction efficiency could be neglected,and the kinetic behavior was investigated under the condition of elimination of external diffusion influence on the leaching process.Effects of leaching temperature,mass ratio of cellulose and ore,and the sulfuric acid concentration on manganese extraction efficiency were discussed.The kinetic data were analyzed based on the shrinking core model,which indicated that the leaching process was dominated by both ash layer diffusion and chemical reaction at the initial stage,with the progress of leaching reaction,the rate-controlling step switched to the ash layer diffusion.It was also concluded that the sulfuric acid concentration had the most significant influence on the leaching rate,the reaction orders with respect to the sulfuric acid concentration were 2.102 in the first 60 min,and 3.642 in the later 90 min,while the reaction orders for mass ratio of cellulose and ore were 0.660 and 0.724,respectively.An Arrhenius relationship was used to relate the temperature to the rate of leaching,from which apparent activation energies were calculated to be 46.487 kJ/mol and 62.290 kJ/mol at the two stages,respectively.Finally,the overall leaching rate equations for the manganese dissolution reaction with cellulose in sulphuric acid solution were developed.The morphological changes and mineralogical forms of the ore before and after the chemical treatment were discussed with the support of SEM and XRD analyses.展开更多
The trail was designed to study on technique aspects of ensiling rice straw (RS) appended amounts of lactobacillus. There were two groups according to silage ways, baled silage (BS) and chopped silage (CS), in w...The trail was designed to study on technique aspects of ensiling rice straw (RS) appended amounts of lactobacillus. There were two groups according to silage ways, baled silage (BS) and chopped silage (CS), in which lactobacillus was added at levels of 10, 15 and 20 mg·kg^-1, respectively and the mixtures were placed into a packed polyethylene bags and stored at room temperature for 45 days. The results showed that lactobacillus had remarkable effect on fermentation characteristics of RS. The quality of the silage was improved with the lactobacillus addition. In the experiment the optimal quality of rice straw silage (RSS) can be obtained when lactobacillus was added with 15 or 20 mg·kg^-1 level. The effect of different silage methods was very remarkable to the silage quality of same material. The quality of CS was better than that of long silage, at the same time, BS was feasible on condition of eligible level of lactic acid bacteria.展开更多
Understanding the impacts of co-invasion of multiple invaders on soil bacterial communities is significant in understanding the mechanisms driving successful invasion.This study aimed to determine the response of soil...Understanding the impacts of co-invasion of multiple invaders on soil bacterial communities is significant in understanding the mechanisms driving successful invasion.This study aimed to determine the response of soil bacterial communities to co-invasion of two invaders daisy fleabane(Erigeron annuus)and Canada goldenrod(Solidago canadensis).Daisy fleabane and/or Canada goldenrod invasion significantly enhanced the operational taxonomic unit richness,Shannon index,and Chao1 index of soil bacterial communities.Canada goldenrod under light degree of invasion and co-invasion of daisy fleabane and Canada goldenrod regardless of invasion degree signally improved the ACE index of soil bacterial communities.Thus,the two invaders can enhance soil bacterial diversity and richness to facilitating subsequent invasion due to the fact that higher soil bacterial diversity and richness can enhance the levels of soil function and nutrients acquisition of plant species.ACE index of soil bacterial communities subjected to co-invasion of daisy fleabane and Canada goldenrod regardless of invasion degree was greater than that under the independent invasion of either daisy fleabane or Canada goldenrod.Hence,co-invasion of the two invaders can impose synergistic impacts on soil bacterial richness,which may build a preferable soil micro-environment via the intensified soil bacterial communities,which is contributive to their following invasion.展开更多
To reveal the impact of mining on bacterial ecology around mining area,bacterial community and geochemical characteristics about Dabaoshan Mine(Guangdong Province,China)were studied.By amplified ribosomal DNA restrict...To reveal the impact of mining on bacterial ecology around mining area,bacterial community and geochemical characteristics about Dabaoshan Mine(Guangdong Province,China)were studied.By amplified ribosomal DNA restriction analysis and phylogenetic analysis,it is found that mining pollution greatly impacts the bacterial ecology and makes the habitat type of polluted environments close to acid mine drainage(AMD)ecology.The polluted environment is acidified so greatly that neutrophil and alkaliphilic microbes are massively dead and decomposed.It provided organic matters that can make Acidiphilium sp.rapidly grow and become the most bacterial species in this niche.Furthermore,Acidithiobacillus ferrooxidans and Leptospirillum sp.are also present in this niche.The amount of Leptospirillum sp.is far more than that of Acidithiobacillus ferrooxidans,which indicates that the concentration of toxic ions is very high.The conclusions of biogeochemical analysis and microbiological monitor are identical. Moreover,because the growth of Acidithiobacillus ferrooxidans and Leptospirillum sp.depends on ferrous iron or inorganic redox sulfur compounds which can be supplied by continual AMD,their presence indicates that AMD still flows into the site.And the area is closer to the outfalls of AMD,their biomasses would be more.So the distinction of their biomasses among different areas can help us to find the effluent route of AMD.展开更多
The bacterial pre-oxidation process of arsenic-containing gold concentrates and the bacterial activity under different chloride ion concentrations were studied by using a mixture of thermophilic strains TCJ domesticat...The bacterial pre-oxidation process of arsenic-containing gold concentrates and the bacterial activity under different chloride ion concentrations were studied by using a mixture of thermophilic strains TCJ domesticated in production.The experimental result shows that with different samples and leaching systems,the adaptability and Cl- tolerance of bacteria are different,and that appropriate chloride ion concentration is conductive to bacterial oxidation,while higher chloride ion concentration will inhibit the bacterial activity and affect the pre-oxidation performance.Under the present production conditions,TCJ can adapt to the changes of water quality in the source of water and its critical chloride ion tolerance value is 2.7 g/L.展开更多
Pyrolysis and combustion characteristics of three different oil cakes such as Pongamia(Pongamia Pinnata),Madhuca(Madhuca Indica),and Jatropha(Jatropha curcas) were investigated in this study.The cellulose and lignin c...Pyrolysis and combustion characteristics of three different oil cakes such as Pongamia(Pongamia Pinnata),Madhuca(Madhuca Indica),and Jatropha(Jatropha curcas) were investigated in this study.The cellulose and lignin contents of oil cakes play very important role in pyrolysis and combustion processes.A kinetic investigation of three oil cakes was carried out and major part of the samples decomposed between 210℃ and 500℃.Pyrolysis and combustion were carried out with the mixtures of cellulose and lignin chemicals in different ratios and compared with the oil cakes.The biomass with higher cellulose content showed faster rate of pyrolysis than the biomass with higher lignin content.However at higher temperatures(>600℃) all the oil cakes exhibited similar conversion at low heating rate in N2 atmosphere.Apparent activation energies increased for Madhuca and Pongamia oil cakes indicating the presence of more cellulose whereas,low activation energy of Jatropha confirms more lignin content.展开更多
During the Twelfth Five-Year plan,large-scale construction of smart grid with safe and stable operation requires a timely and accurate short-term load forecasting method.Moreover,along with the full-scale smart grid c...During the Twelfth Five-Year plan,large-scale construction of smart grid with safe and stable operation requires a timely and accurate short-term load forecasting method.Moreover,along with the full-scale smart grid construction,the power supply mode and consumption mode of the whole system can be optimized through the accurate short-term load forecasting;and the security,stability and cleanness of the system can be guaranteed.展开更多
The effect of sodium carboxymethyl cellulose (Na-CMC) on the corrosion behavior of mild steel in 1.0 mol·L-1 HCl solution has been investigated by using weight loss (WL) measurement, potentiodynamic polarization,...The effect of sodium carboxymethyl cellulose (Na-CMC) on the corrosion behavior of mild steel in 1.0 mol·L-1 HCl solution has been investigated by using weight loss (WL) measurement, potentiodynamic polarization, linear polarization resistance (LPR), and electrochemical impedance spectroscopy (EIS) methods. These results showed that the inhibition efficiency of Na-CMC increased with increasing the inhibitor concentration. Potentiodynamic polarization studies revealed that the Na-CMC was a mixed type inhibitor in 1.0 mol·L-1 HCl. The adsorption of the inhibitor on mild steel surface has been found to obey the Langmuir isotherm. The effect of temperature on the corrosion behavior of mild steel in 1.0 mol·L-1 HCl with addition of 0.04% of Na-CMC has been studied in the temperature range of 298-328 K. The associated apparent activation energy (E*a ) of corrosion reaction has been determined. Scanning electron microscopy (SEM) has been applied to investigate the surface morphology of mild steel in the absence and presence of the inhibitor molecules.展开更多
Carboxylmethyl cellulose(CMC) has become a commercial organic binder in agglomeration of iron ore concentrates. The relative molecular mass and degree of substitution(DS) of CMC have a large impact on its binding perf...Carboxylmethyl cellulose(CMC) has become a commercial organic binder in agglomeration of iron ore concentrates. The relative molecular mass and degree of substitution(DS) of CMC have a large impact on its binding performance. The interaction mechanism between CMC and iron ore particles was analyzed through Zeta potential measurements, adsorption measurements and infrared spectra. The results show that the interaction is chemical adsorption-oriented and the CMC's adsorption performance is related to the properties of CMC as well as the type of iron oxides. CMC has a greater affinity to Fe2O3 than Fe3O4, and CMC with higher relative molecular mass shows a higher adsorption isotherm. Pelletization of practical iron ore concentrates added with CMC further illustrates that CMC with higher relative molecular mass or DS exhibits a better binding performance, which is consistent with the results of adsorption tests.展开更多
Direct conversion of cellulose into 5-hydroxymethylfurfural(HMF) was performed by using single or combined metal chloride catalysts in 1-ethyl-3-methylimidazolium chloride(Cl) ionic liquid.Our study demonstrated forma...Direct conversion of cellulose into 5-hydroxymethylfurfural(HMF) was performed by using single or combined metal chloride catalysts in 1-ethyl-3-methylimidazolium chloride(Cl) ionic liquid.Our study demonstrated formation of 2-furyl hydroxymethyl ketone(FHMK),and furfural(FF) simultaneously with the formation of HMF.Various reaction parameters were addressed to optimize yields of furan derivatives produced from cellulose by varying reaction temperature,time,and the type of metal chloride catalyst.Catalytic reaction by using FeCl3 resulted in 59.9% total yield of furan derivatives(HMF,FHMK,and FF) from cellulose.CrCl3 was the most effective catalyst for selective conversion of cellulose into HMF(35.6%) with less concentrations of FHMK,and FF.Improving the yields of furans produced from cellulose could be achieved via reactions catalyzed by different combinations of two metal chlorides.Further optimization was carried out to produce total furans yield 75.9% by using FeCl3/CuCl2 combination.CrCl3/CuCl2 was the most selective combination to convert cellulose into HMF(39.9%) with total yield(63.8%) of furans produced from the reaction.The temperature and time of the catalytic reaction played an important role in cellulose conversion,and the yields of products.Increasing the reaction temperature could enhance the cellulose conversion and HMF yield for short reaction time intervals(5~20 min).展开更多
The purpose of the experiment is to research the effect of different rapeseed treatments feeding on activity of cellulose enzyme in sheep. Eight male adults of semi-fine wool sheep breeds with the same weight and perm...The purpose of the experiment is to research the effect of different rapeseed treatments feeding on activity of cellulose enzyme in sheep. Eight male adults of semi-fine wool sheep breeds with the same weight and permanent rurnen cannulas were selected according to 4×4 Latin square design to determine the effect of different rapeseed treatment groups including crushed rapeseed, whole rapeseed, extruded rapeseed (dietary lipid content of =67 g·kg^-1) and control group (dietary lipid content of =30 g·kg^-1) on activity dynamic variation of ruminal celluolytic enzyme in sheep. The results showed that ruminal fluid pH matched up to the condition of fiber degradation and growth of cellulolytic bacterium when fed four diets; but there was significant difference (P〈0.05) for the activity of microcrystalline cellulose, glucanase, salicin enzyme involved in ruminal fiber degradation after fed 2, 4, 6 h.展开更多
文摘In this study,composite films consisting of polylactic acid(PLA),ethyl cellulose(EC),and zein were prepared by solution casting method,and their performance and application in chilled fresh meat preservation were investigated.The results showed that the three materials had satisfactory compatibility in the composite film.Addition of EC and zein effectively improved the mechanical properties,thermodynamic properties,surface hydrophilicity,oxygen permeability,and degradation properties of PLA films.When the ratio of PLA to EC was 3:7,the tensile strength and elongation at break reached maximum values of 16.6 MPa and 30.5%,respectively.Moreover,under different conditions,the composite film exhibited better degradability than the PLA film.The composite film with a 3:7 ratio of PLA to EC had the best performance,with a degradation rate of 21.75%after 84 days.Chilled fresh meat wrapped with the composite film showed significantly improved antioxidant,antibacterial,and water-holding properties.
基金Financial support from Universiti Pertahanan Nasional Malaysia,Malaysia for Tabung Amanah PPPI (Defence Research Institute,UPNM)grant-A0014 (UPNM/2023/GPPP/SG/2)funded by Universiti Pertahanan Nasional Malaysia (UPNM),situated in Malaysia+1 种基金This financial backing was made possible through the"Tabung Amanah PPPI"grant,which is affiliated with UPNM’s Defence Research Institutethe grant is identifiable by its unique reference number,"A0014 (UPNM/2023/GPPP/SG/2)"。
文摘This review paper explores the potential of oil palm biomass as a valuable cellulose source for the production of nitrocellulose-based propellants,contributing to the green revolution and sustainable energy solutions.It highlights the availability of the corresponding biomass in Malaysia and in line with global studies,the chemical compositions,as well as a brief description of current technologies for converting biomass of oil palm into value added products specifically cellulose.Steps to achieve maximum utilization of biomass from oil palm industry for cellulose production and prospective source for nitrocellulose-based propellant are also proposed.The methodology section outlines the pretreatment of lignocellulosic fibres,cellulose extraction,and nitrocellulose production processes.Overall,the review underscores the prospective of palm oil biomass as a sustainable cellulose source for propellant manufacturing,while acknowledging the need for further research and advancements in the field.
基金Supported by Northeast Agricultural University Innovation Funding for Postgraduate(yjscx14007)China Agriculture Research System(CARS-37)
文摘Twenty-nine facultative anaerobic cellulose-degrading bacteria were isolated from soil, rumen fluid, rumen residues and diet of dairy cow. Based on 16 Sr DNA analysis by BLAST algorithm method, the results showed that most of the strains were Bacillus genera, and six of the 29 strains were bigger than 10 mm of diameter of clear zones. For them, two strains were isolated from rumen fluid(L5 and L7) and other two were isolated from rumen residue(N5 and N9), while others were isolated from soil(T1) and diet(S6), respectively. Strains from rumen fluid and residue had higher activities of FPCase and CMCase, but lower β-glucosidases.
基金supported by the National Natural Science Foundation of China(6137415361473138)+2 种基金Natural Science Foundation of Jiangsu Province(BK20151130)Six Talent Peaks Project in Jiangsu Province(2015-DZXX-011)China Scholarship Council Fund(201606845005)
文摘The quantum bacterial foraging optimization(QBFO)algorithm has the characteristics of strong robustness and global searching ability. In the classical QBFO algorithm, the rotation angle updated by the rotation gate is discrete and constant,which cannot affect the situation of the solution space and limit the diversity of bacterial population. In this paper, an improved QBFO(IQBFO) algorithm is proposed, which can adaptively make the quantum rotation angle continuously updated and enhance the global search ability. In the initialization process, the modified probability of the optimal rotation angle is introduced to avoid the existence of invariant solutions. The modified operator of probability amplitude is adopted to further increase the population diversity.The tests based on benchmark functions verify the effectiveness of the proposed algorithm. Moreover, compared with the integerorder PID controller, the fractional-order proportion integration differentiation(PID) controller increases the complexity of the system with better flexibility and robustness. Thus the fractional-order PID controller is applied to the servo system. The tuning results of PID parameters of the fractional-order servo system show that the proposed algorithm has a good performance in tuning the PID parameters of the fractional-order servo system.
基金Project(61173032)supported by the National Natural Science Foundation of ChinaProject(20090406)supported by the Tianjin Scientific and Technological Development Fund of Higher Education of China
文摘The utilization of biomimicry of bacterial foraging strategy was considered to develop an adaptive control strategy for mobile robot, and a bacterial foraging approach was proposed for robot path planning. In the proposed model, robot that mimics the behavior of bacteria is able to determine an optimal collision-free path between a start and a target point in the environment surrounded by obstacles. In the simulation, two test scenarios of static environment with different number obstacles were adopted to evaluate the performance of the proposed method. Simulation results show that the robot which reflects the bacterial foraging behavior can adapt to complex environments in the planned trajectories with both satisfactory accuracy and stability.
基金Project(2010FJ1011)supported by the Major Project of Science and Technology of Hunan Province,China
文摘The kinetics of reductive leaching of manganese from a low-grade manganese oxide ore were studied using cellulose as reductant in dilute sulfuric acid medium.It was found that when the stirring speed was higher than 200 r/min,the effect of gas film diffusion on manganese extraction efficiency could be neglected,and the kinetic behavior was investigated under the condition of elimination of external diffusion influence on the leaching process.Effects of leaching temperature,mass ratio of cellulose and ore,and the sulfuric acid concentration on manganese extraction efficiency were discussed.The kinetic data were analyzed based on the shrinking core model,which indicated that the leaching process was dominated by both ash layer diffusion and chemical reaction at the initial stage,with the progress of leaching reaction,the rate-controlling step switched to the ash layer diffusion.It was also concluded that the sulfuric acid concentration had the most significant influence on the leaching rate,the reaction orders with respect to the sulfuric acid concentration were 2.102 in the first 60 min,and 3.642 in the later 90 min,while the reaction orders for mass ratio of cellulose and ore were 0.660 and 0.724,respectively.An Arrhenius relationship was used to relate the temperature to the rate of leaching,from which apparent activation energies were calculated to be 46.487 kJ/mol and 62.290 kJ/mol at the two stages,respectively.Finally,the overall leaching rate equations for the manganese dissolution reaction with cellulose in sulphuric acid solution were developed.The morphological changes and mineralogical forms of the ore before and after the chemical treatment were discussed with the support of SEM and XRD analyses.
基金Heilongjiang Dairy Project Italian Grant Project
文摘The trail was designed to study on technique aspects of ensiling rice straw (RS) appended amounts of lactobacillus. There were two groups according to silage ways, baled silage (BS) and chopped silage (CS), in which lactobacillus was added at levels of 10, 15 and 20 mg·kg^-1, respectively and the mixtures were placed into a packed polyethylene bags and stored at room temperature for 45 days. The results showed that lactobacillus had remarkable effect on fermentation characteristics of RS. The quality of the silage was improved with the lactobacillus addition. In the experiment the optimal quality of rice straw silage (RSS) can be obtained when lactobacillus was added with 15 or 20 mg·kg^-1 level. The effect of different silage methods was very remarkable to the silage quality of same material. The quality of CS was better than that of long silage, at the same time, BS was feasible on condition of eligible level of lactic acid bacteria.
基金Project(31300343)supported by the National Natural Science Foundation of ChinaProject(PCRRF19009)supported by Open Science Research Fund of State Key Laboratory of Pollution Control and Resource Reuse(Tongji University),ChinaProject supported by Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment,China。
文摘Understanding the impacts of co-invasion of multiple invaders on soil bacterial communities is significant in understanding the mechanisms driving successful invasion.This study aimed to determine the response of soil bacterial communities to co-invasion of two invaders daisy fleabane(Erigeron annuus)and Canada goldenrod(Solidago canadensis).Daisy fleabane and/or Canada goldenrod invasion significantly enhanced the operational taxonomic unit richness,Shannon index,and Chao1 index of soil bacterial communities.Canada goldenrod under light degree of invasion and co-invasion of daisy fleabane and Canada goldenrod regardless of invasion degree signally improved the ACE index of soil bacterial communities.Thus,the two invaders can enhance soil bacterial diversity and richness to facilitating subsequent invasion due to the fact that higher soil bacterial diversity and richness can enhance the levels of soil function and nutrients acquisition of plant species.ACE index of soil bacterial communities subjected to co-invasion of daisy fleabane and Canada goldenrod regardless of invasion degree was greater than that under the independent invasion of either daisy fleabane or Canada goldenrod.Hence,co-invasion of the two invaders can impose synergistic impacts on soil bacterial richness,which may build a preferable soil micro-environment via the intensified soil bacterial communities,which is contributive to their following invasion.
基金Project(50621063)supported by the Science Fund for Creative Research Groups of ChinaProject(2004CB619201)supported by the Major State Basic Research Development Program of China
文摘To reveal the impact of mining on bacterial ecology around mining area,bacterial community and geochemical characteristics about Dabaoshan Mine(Guangdong Province,China)were studied.By amplified ribosomal DNA restriction analysis and phylogenetic analysis,it is found that mining pollution greatly impacts the bacterial ecology and makes the habitat type of polluted environments close to acid mine drainage(AMD)ecology.The polluted environment is acidified so greatly that neutrophil and alkaliphilic microbes are massively dead and decomposed.It provided organic matters that can make Acidiphilium sp.rapidly grow and become the most bacterial species in this niche.Furthermore,Acidithiobacillus ferrooxidans and Leptospirillum sp.are also present in this niche.The amount of Leptospirillum sp.is far more than that of Acidithiobacillus ferrooxidans,which indicates that the concentration of toxic ions is very high.The conclusions of biogeochemical analysis and microbiological monitor are identical. Moreover,because the growth of Acidithiobacillus ferrooxidans and Leptospirillum sp.depends on ferrous iron or inorganic redox sulfur compounds which can be supplied by continual AMD,their presence indicates that AMD still flows into the site.And the area is closer to the outfalls of AMD,their biomasses would be more.So the distinction of their biomasses among different areas can help us to find the effluent route of AMD.
基金Project(2007AA060902) supported by the National High Technology Research and Development Program of ChinaProject(2010CB630905) supported by the National Basic Research Program of China
文摘The bacterial pre-oxidation process of arsenic-containing gold concentrates and the bacterial activity under different chloride ion concentrations were studied by using a mixture of thermophilic strains TCJ domesticated in production.The experimental result shows that with different samples and leaching systems,the adaptability and Cl- tolerance of bacteria are different,and that appropriate chloride ion concentration is conductive to bacterial oxidation,while higher chloride ion concentration will inhibit the bacterial activity and affect the pre-oxidation performance.Under the present production conditions,TCJ can adapt to the changes of water quality in the source of water and its critical chloride ion tolerance value is 2.7 g/L.
文摘Pyrolysis and combustion characteristics of three different oil cakes such as Pongamia(Pongamia Pinnata),Madhuca(Madhuca Indica),and Jatropha(Jatropha curcas) were investigated in this study.The cellulose and lignin contents of oil cakes play very important role in pyrolysis and combustion processes.A kinetic investigation of three oil cakes was carried out and major part of the samples decomposed between 210℃ and 500℃.Pyrolysis and combustion were carried out with the mixtures of cellulose and lignin chemicals in different ratios and compared with the oil cakes.The biomass with higher cellulose content showed faster rate of pyrolysis than the biomass with higher lignin content.However at higher temperatures(>600℃) all the oil cakes exhibited similar conversion at low heating rate in N2 atmosphere.Apparent activation energies increased for Madhuca and Pongamia oil cakes indicating the presence of more cellulose whereas,low activation energy of Jatropha confirms more lignin content.
文摘During the Twelfth Five-Year plan,large-scale construction of smart grid with safe and stable operation requires a timely and accurate short-term load forecasting method.Moreover,along with the full-scale smart grid construction,the power supply mode and consumption mode of the whole system can be optimized through the accurate short-term load forecasting;and the security,stability and cleanness of the system can be guaranteed.
基金TUBITAK(104T417) for partially supporting the work by providing us withthe necessary equipment
文摘The effect of sodium carboxymethyl cellulose (Na-CMC) on the corrosion behavior of mild steel in 1.0 mol·L-1 HCl solution has been investigated by using weight loss (WL) measurement, potentiodynamic polarization, linear polarization resistance (LPR), and electrochemical impedance spectroscopy (EIS) methods. These results showed that the inhibition efficiency of Na-CMC increased with increasing the inhibitor concentration. Potentiodynamic polarization studies revealed that the Na-CMC was a mixed type inhibitor in 1.0 mol·L-1 HCl. The adsorption of the inhibitor on mild steel surface has been found to obey the Langmuir isotherm. The effect of temperature on the corrosion behavior of mild steel in 1.0 mol·L-1 HCl with addition of 0.04% of Na-CMC has been studied in the temperature range of 298-328 K. The associated apparent activation energy (E*a ) of corrosion reaction has been determined. Scanning electron microscopy (SEM) has been applied to investigate the surface morphology of mild steel in the absence and presence of the inhibitor molecules.
基金Project(2012zzts101)supported by the Fundamental Research Funds for the Central Universities,China
文摘Carboxylmethyl cellulose(CMC) has become a commercial organic binder in agglomeration of iron ore concentrates. The relative molecular mass and degree of substitution(DS) of CMC have a large impact on its binding performance. The interaction mechanism between CMC and iron ore particles was analyzed through Zeta potential measurements, adsorption measurements and infrared spectra. The results show that the interaction is chemical adsorption-oriented and the CMC's adsorption performance is related to the properties of CMC as well as the type of iron oxides. CMC has a greater affinity to Fe2O3 than Fe3O4, and CMC with higher relative molecular mass shows a higher adsorption isotherm. Pelletization of practical iron ore concentrates added with CMC further illustrates that CMC with higher relative molecular mass or DS exhibits a better binding performance, which is consistent with the results of adsorption tests.
基金U.S.DOE through Sustainable Energy Research Center(SERC)at Mississippi State University(DE-FG36-06GO86025)
文摘Direct conversion of cellulose into 5-hydroxymethylfurfural(HMF) was performed by using single or combined metal chloride catalysts in 1-ethyl-3-methylimidazolium chloride(Cl) ionic liquid.Our study demonstrated formation of 2-furyl hydroxymethyl ketone(FHMK),and furfural(FF) simultaneously with the formation of HMF.Various reaction parameters were addressed to optimize yields of furan derivatives produced from cellulose by varying reaction temperature,time,and the type of metal chloride catalyst.Catalytic reaction by using FeCl3 resulted in 59.9% total yield of furan derivatives(HMF,FHMK,and FF) from cellulose.CrCl3 was the most effective catalyst for selective conversion of cellulose into HMF(35.6%) with less concentrations of FHMK,and FF.Improving the yields of furans produced from cellulose could be achieved via reactions catalyzed by different combinations of two metal chlorides.Further optimization was carried out to produce total furans yield 75.9% by using FeCl3/CuCl2 combination.CrCl3/CuCl2 was the most selective combination to convert cellulose into HMF(39.9%) with total yield(63.8%) of furans produced from the reaction.The temperature and time of the catalytic reaction played an important role in cellulose conversion,and the yields of products.Increasing the reaction temperature could enhance the cellulose conversion and HMF yield for short reaction time intervals(5~20 min).
基金Supported by Project of Dairy Cows System of Chinese Agricultural Department
文摘The purpose of the experiment is to research the effect of different rapeseed treatments feeding on activity of cellulose enzyme in sheep. Eight male adults of semi-fine wool sheep breeds with the same weight and permanent rurnen cannulas were selected according to 4×4 Latin square design to determine the effect of different rapeseed treatment groups including crushed rapeseed, whole rapeseed, extruded rapeseed (dietary lipid content of =67 g·kg^-1) and control group (dietary lipid content of =30 g·kg^-1) on activity dynamic variation of ruminal celluolytic enzyme in sheep. The results showed that ruminal fluid pH matched up to the condition of fiber degradation and growth of cellulolytic bacterium when fed four diets; but there was significant difference (P〈0.05) for the activity of microcrystalline cellulose, glucanase, salicin enzyme involved in ruminal fiber degradation after fed 2, 4, 6 h.