期刊文献+
共找到124篇文章
< 1 2 7 >
每页显示 20 50 100
基于脉冲神经元膜电位增量的数据分布统计量及批归一化
1
作者 李炜奇 陈云华 +1 位作者 陈平华 朱春佳 《计算机应用研究》 北大核心 2025年第8期2341-2347,共7页
脉冲神经网络(SNN)因其具有更好的生物解释性、强大的时空信息表征能力,以及超低功耗和延迟特性而受到广泛关注。然而SNN在训练算法、超参数设置、架构设计研究等方面还存在不少挑战性的问题。针对现有SNN归一化(BN)方法无法有效处理时... 脉冲神经网络(SNN)因其具有更好的生物解释性、强大的时空信息表征能力,以及超低功耗和延迟特性而受到广泛关注。然而SNN在训练算法、超参数设置、架构设计研究等方面还存在不少挑战性的问题。针对现有SNN归一化(BN)方法无法有效处理时间依赖性的问题,通过分析膜电位增量在时间步上的传播,提出按时间步逐步计算膜电位增量的时空积累量;以此为数据分布的统计量分别对各个时间步数据进行归一化,并提出按照指数移动平均计算膜电位增量的时空积累量,形成一种带衰减因子的时空累积批归一化(spatio-temporal attenuation cumulative batch normalization,STBN)方法。在CIFAR-10和CIFAR-100及CIFAR10-DVS数据集上的实验结果表明,所提方法能显著提升网络分类精度并降低时延。特别是在CIFAR-100数据集上仅使用两个时间步就获得了76.30%的精度,相比同类模型的先前最优算法精度提升了3.43%。 展开更多
关键词 脉冲神经网络 批归一化 脉冲时间依赖性 脉冲神经网络训练算法
在线阅读 下载PDF
改进VMD和改进Elman的地铁列车滚动轴承故障诊断 被引量:1
2
作者 刘敏 杨俊杰 赵雪 《机械设计与制造》 北大核心 2025年第5期207-212,共6页
滚动轴承作为地铁列车的重要组成之一,直接影响列车安全,针对现有滚动轴承故障诊断方法存在的准确率差和效率低等问题,在对滚动轴承进行故障分析的基础上,提出将改进的变分模态分解和改进的Elman神经网络相结合用于地铁列车滚动轴承振... 滚动轴承作为地铁列车的重要组成之一,直接影响列车安全,针对现有滚动轴承故障诊断方法存在的准确率差和效率低等问题,在对滚动轴承进行故障分析的基础上,提出将改进的变分模态分解和改进的Elman神经网络相结合用于地铁列车滚动轴承振动信号的特征提取和故障诊断。通过改进的麻雀搜索算法对变分模式分解算法(分解个数和惩罚因子)和Elman神经网络(权重和阈值)进行寻优,提高特征提取和故障诊断精度和效率。通过实验对其性能进行分析。结果表明,相比于常规方法,所提地铁列车滚动轴承振动信号特征提取方法收敛速度快和运行时间短,故障诊断模型具有较高的诊断准确率和效率,故障诊断准确率达99.00%,平均诊断时间2.02s,具有一定的实用价值。 展开更多
关键词 地铁列车 滚动轴承 故障诊断 变分模态分解 ELMAN神经网络 麻雀搜索算法
在线阅读 下载PDF
BP神经网络的IAPSOBPNN组合训练算法 被引量:1
3
作者 黄丽 唐万梅 《重庆工学院学报(自然科学版)》 2008年第9期120-126,共7页
针对BP神经网络易陷入局部极小点、泛化能力低的缺陷,提出了BP神经网络的IAP-SOBPNN(Particle Swarm Optimization with Immunity Algorithm Back Propagation Neural Network)组合训练算法,即免疫算法、粒子群算法和BP算法的组合.将此... 针对BP神经网络易陷入局部极小点、泛化能力低的缺陷,提出了BP神经网络的IAP-SOBPNN(Particle Swarm Optimization with Immunity Algorithm Back Propagation Neural Network)组合训练算法,即免疫算法、粒子群算法和BP算法的组合.将此组合训练算法应用到非线性函数逼近和具有复杂非线性动力学特征的股价预测中,仿真实验表明,该算法避免了网络陷入局部极小点,提高了网络的泛化能力,同时为BP网络参数的确定提供了一条崭新的思路. 展开更多
关键词 BP神经网络 IAPSObpnN组合训练算法 非线性函数逼近 股价预测
在线阅读 下载PDF
基于多色域特征与物理模型的水下图像增强
4
作者 张瑞航 林森 《智能系统学报》 北大核心 2025年第2期475-485,共11页
水下智能机器人在探测海洋信息时易受悬浮颗粒和光衰减现象的干扰,导致视觉图像退化,造成色彩扭曲、细节模糊等现象。针对上述问题,提出基于多色域特征与物理模型的水下图像增强。首先,设计多色域特征聚合网络,旨在利用不同色域空间提... 水下智能机器人在探测海洋信息时易受悬浮颗粒和光衰减现象的干扰,导致视觉图像退化,造成色彩扭曲、细节模糊等现象。针对上述问题,提出基于多色域特征与物理模型的水下图像增强。首先,设计多色域特征聚合网络,旨在利用不同色域空间提供的信息帮助图像颜色恢复。其次,为获取到更真实的视觉效果,对白平衡算法进行推广,并将深度学习算法与水下光学成像模型结合,以数据驱动的方式求解清晰图像。最后,提出多色域轮换模式对网络进行训练,在不同色域空间中搜索最优解。实验证明,该方法在色彩平衡、细节恢复方面效果显著,相比经典算法与前沿算法更具优势,在特征点匹配与显著性检验任务中满足水下智能机器人视觉系统对图像清晰度的要求。 展开更多
关键词 水下图像增强 成像模型 深度学习 多色域空间 特征聚合 轮换训练 算法推广 卷积神经网络
在线阅读 下载PDF
基于PSO-LSTM的重载铁路车轨桥系统随机振动响应预测方法 被引量:5
5
作者 毛建锋 李铮 +2 位作者 伍军 余志武 胡连军 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第9期3661-3671,共11页
在车桥系统随机振动分析中,随机动力响应是评价行车安全性的关键因素之一,而现有的响应计算方法存在耗时长、成本高的问题。能够快速准确预测车-轨-桥系统的动力响应对重载铁路桥梁的状态评估和运维养维具有重要意义。本文提出了一种基... 在车桥系统随机振动分析中,随机动力响应是评价行车安全性的关键因素之一,而现有的响应计算方法存在耗时长、成本高的问题。能够快速准确预测车-轨-桥系统的动力响应对重载铁路桥梁的状态评估和运维养维具有重要意义。本文提出了一种基于粒子群优化(Particle Swarm Optimization,PSO)长短期记忆(Long Short-term Memory,LSTM)神经网络模型的重载车桥系统随机振动响应预测方法。该方法以车桥随机参数与轨道随机不平顺激励为输入,以桥梁动力响应为输出构造代理模型。首先,基于商业软件MATLAB平台构建PSO-LSTM网络模型;其次,通过建立的车-轨-桥系统随机振动分析模型计算初始样本集对应的随机动态响应,并进行模型训练,同时利用PSO算法优化LSTM结构参数;最后,使用训练好的PSO-LSTM模型对桥梁动态响应进行预测。为了验证本算法的优越性和鲁棒性,以朔黄重载铁路实测数据为例,对比本算法与BP(Back Propagation)神经网络、GRU(Gated Recurrent Unit)神经网络和LSTM神经网络的预测效率,并讨论不同车速下的预测情况,开展本模型与实测数据及有限元分析数据的对比分析。研究结果表明:在PSO优化下,LSTM模型预测结果得到一定的改善,PSO-LSTM模型拟合相关性系数可以达到0.97,其他评价误差值也均小于BP神经网络、GRU神经网络模型,本文模型可更高效准确地预测桥梁随机动力响应,可为进一步发展车-轨-桥系统随机振动响应预测理论提供技术支持。 展开更多
关键词 随机振动 响应预测 PSO算法 LSTM神经网络 车轨桥系统
在线阅读 下载PDF
严重遮挡场景下AOA-ENN辅助列车定位的方法研究
6
作者 武晓春 杨伟康 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第7期2871-2883,共13页
铁路周边卫星遮挡情况复杂多变,当列车在隧道等严重遮挡场景下运行时,北斗卫星导航系统/捷联惯性导航系统(BDS/SINS)列车组合定位系统无法接收到卫星信号,导致列车定位误差累积甚至定位失效。为提高列车在严重遮挡场景下的定位精度,提... 铁路周边卫星遮挡情况复杂多变,当列车在隧道等严重遮挡场景下运行时,北斗卫星导航系统/捷联惯性导航系统(BDS/SINS)列车组合定位系统无法接收到卫星信号,导致列车定位误差累积甚至定位失效。为提高列车在严重遮挡场景下的定位精度,提出阿基米德优化算法优化的Elman神经网络(AOA-ENN)辅助BDS/SINS列车组合定位系统进行列车定位的方法。首先,在无迹卡尔曼滤波算法中引入新息理论得到自适应无迹卡尔曼滤波算法(AUKF),将其作为BDS/SINS列车组合定位系统的信息融合算法。其次,基于模糊C均值聚类算法(FCM)建立列车运行场景识别模型,依据环境特征参数对列车运行场景进行自主识别。最后根据场景识别模型的输出结果,当列车在开阔、低遮挡、高遮挡场景运行时,通过AUKF对BDS和SINS解算的定位信息进行融合来完成列车定位,同时将采集的列车定位数据加入训练集,对AOA-ENN进行在线训练;当列车在严重遮挡场景下运行时,BDS无法正常接收信号,利用训练好的AOA-ENN辅助列车组合定位系统进行定位,利用AUKF对AOA-ENN的预测信息和SINS解算的信息进行融合后输出定位结果。实验结果表明:在严重遮挡场景下,AOA-ENN辅助列车组合定位系统得到的定位成功率达到98.2%;通过不同优化算法和神经网络的仿真对比实验,验证了AOA-ENN在辅助列车组合定位系统定位时的优越性。所得成果为优化列车在隧道等严重遮挡场景下的定位精度提供了参考。 展开更多
关键词 列车组合定位系统 运行环境识别 自适应无迹卡尔曼滤波 阿基米德优化算法 ELMAN神经网络
在线阅读 下载PDF
高速列车纵向动力学建模与自适应RBFNN控制 被引量:3
7
作者 付雅婷 胡东亮 +1 位作者 杨辉 欧阳超明 《铁道学报》 EI CAS CSCD 北大核心 2024年第1期42-52,共11页
高速列车由多节车厢链接而成的结构特性导致其高速运行在变路况线路条件下难以有效地对其进行优化控制。针对上述问题,提出一种高速列车纵向动力学模型与径向基函数神经网络(RBFNN)控制策略。考虑列车车钩力和复杂线路条件,分析整列车... 高速列车由多节车厢链接而成的结构特性导致其高速运行在变路况线路条件下难以有效地对其进行优化控制。针对上述问题,提出一种高速列车纵向动力学模型与径向基函数神经网络(RBFNN)控制策略。考虑列车车钩力和复杂线路条件,分析整列车前后的不同受力情况,建立列车纵向动力学模型。针对该模型无外加干扰时设计一种理想反馈控制律,引入RBFNN对理想控制输出进行拟合,在考虑干扰项影响的情况下,通过设计参数估计自适应律代替神经网络权值的调整,并对其进行Lyapunov稳定性证明。采用京石武高铁北京西—郑州东段的CRH380B型高速列车真实线路运行数据进行仿真模拟,并在相同条件下与反演滑模(BSSM)控制器的仿真结果进行对比。仿真结果表明所提控制器更能有效应对复杂路况变化和外界干扰,对高速列车具有更好的控制效果,改善其运行的平稳性及高效性。 展开更多
关键词 高速列车 纵向动力学模型 径向基函数神经网络 自适应算法 LYAPUNOV理论
在线阅读 下载PDF
面向多核向量加速器的卷积神经网络推理和训练向量化方法 被引量:1
8
作者 陈杰 李程 刘仲 《计算机工程与科学》 CSCD 北大核心 2024年第4期580-589,共10页
随着以卷积神经网络为代表的深度学习得到广泛应用,神经网络模型中的计算量也急速增长,推动了深度学习加速器的发展。如何针对加速器硬件的体系结构特性进行加速和优化神经网络模型的性能成为研究热点。针对自主设计的多核向量加速器FT-... 随着以卷积神经网络为代表的深度学习得到广泛应用,神经网络模型中的计算量也急速增长,推动了深度学习加速器的发展。如何针对加速器硬件的体系结构特性进行加速和优化神经网络模型的性能成为研究热点。针对自主设计的多核向量加速器FT-M7004上的VGG网络模型推理和训练算法,分别提出了卷积、池化和全连接等核心算子的向量化映射方法,采用SIMD向量化、DMA双缓冲传输和权值共享等优化策略,充分发挥了向量加速器的体系结构优势,取得了较高的计算效率。实验结果表明,在FT-M7004平台上,卷积层推理和训练的平均计算效率分别达到了86.62%和69.63%;全连接层推理和训练的平均计算效率分别达到了93.17%和81.98%;VGG网络模型在FT-M7004上的推理计算效率超过GPU平台20%以上。 展开更多
关键词 多核向量加速器 卷积神经网络 推理算法 训练算法
在线阅读 下载PDF
基于WOA优化神经网络的斜坡道拱顶沉降预测研究 被引量:1
9
作者 吴泽鑫 张成良 +1 位作者 张华超 高梅 《有色金属工程》 CAS 北大核心 2024年第4期150-160,174,共12页
为了更准确地预测地下矿山中斜坡道拱顶沉降的趋势,并控制预测精度,以保障矿山安全,提出鲸鱼算法优化神经网络的斜坡道拱顶沉降预测方法。主要步骤为:首先采取邻点中值平滑处理的方法对原始数据进行处理,将处理好的监测数据作为输入样本... 为了更准确地预测地下矿山中斜坡道拱顶沉降的趋势,并控制预测精度,以保障矿山安全,提出鲸鱼算法优化神经网络的斜坡道拱顶沉降预测方法。主要步骤为:首先采取邻点中值平滑处理的方法对原始数据进行处理,将处理好的监测数据作为输入样本对BP、Elman神经网络进行训练、测试;再利用鲸鱼算法对初始权值和阈值优化,最后通过不同模型输出预测值。实验表明:鲸鱼优化后的BP、Elman神经网络模型相比优化前均能更准确地预测斜坡道拱顶沉降;WOA-Elman模型的决定系数为0.948,优于WOA-BP模型0.941,但WOA-Elman模型运行时间耗费671.214 s远超WOA-BP模型307.226 s,WOA-Elman耗费了更多的训练时间换取了少量的精度提升,大幅降低了训练效率;结合工程实例实测值、预测值的分析比较,鲸鱼算法(WOA)优化后的BP神经网络表现出了更高效且准确的斜坡道拱顶沉降预测能力。 展开更多
关键词 拱顶沉降 BP神经网络 ELMAN神经网络 鲸鱼优化算法 训练效率
在线阅读 下载PDF
基于改进遗传算法的广度架构搜索算法 被引量:1
10
作者 林东凤 黄汉明 沈俏 《计算机工程与设计》 北大核心 2024年第12期3667-3673,共7页
为扩大遗传算法产生的子代种群和亲代种群间的差异,提出一种搜索算法,即广度单路径架构搜索算法。该方法将搜索过程分为两个阶段,第一阶段为扩张,使用一种新的交叉算子以及停滞检测算法增大子代种群和亲代种群间的差距,扩大搜索范围;第... 为扩大遗传算法产生的子代种群和亲代种群间的差异,提出一种搜索算法,即广度单路径架构搜索算法。该方法将搜索过程分为两个阶段,第一阶段为扩张,使用一种新的交叉算子以及停滞检测算法增大子代种群和亲代种群间的差距,扩大搜索范围;第二阶段为收缩,使用前一阶段获得的若干个体,采用单点交叉做搜索,保证搜索的稳定性,得到最终的结果。在4个数据集上的实验结果表明,该算法搜索出的最优网络与手工设计的神经网络和基于传统遗传算法的神经架构搜索方法相比,能获得有竞争力的结果。 展开更多
关键词 神经架构搜索 遗传算法 进化计算 均匀训练 卷积神经网络 停滞检测 图像分类
在线阅读 下载PDF
跨脉冲传播的深度脉冲神经网络训练方法
11
作者 曾建新 陈云华 +1 位作者 李炜奇 陈平华 《计算机应用研究》 CSCD 北大核心 2024年第7期2134-2140,共7页
基于反向传播的脉冲神经网络(SNNs)的训练方法仍面临着诸多问题与挑战,包括脉冲发放过程不可微分、脉冲神经元具有复杂的时空动力过程等。此外,SNNs反向传播训练方法往往没有考虑误差信号在相邻脉冲间的关系,大大降低了网络模型的准确... 基于反向传播的脉冲神经网络(SNNs)的训练方法仍面临着诸多问题与挑战,包括脉冲发放过程不可微分、脉冲神经元具有复杂的时空动力过程等。此外,SNNs反向传播训练方法往往没有考虑误差信号在相邻脉冲间的关系,大大降低了网络模型的准确性。为此,提出一种跨脉冲误差传播的深度脉冲神经网络训练方法(cross-spike error backpropagation,CSBP),将神经元的误差反向传播分成脉冲发放时间随突触后膜电位变化关系和相邻脉冲发放时刻点间的依赖关系两种依赖关系。其中,通过前者解决了脉冲不可微分的问题,通过后者明确了脉冲间的依赖关系,使得误差信号能跨脉冲传播,提升了生物合理性。此外,并对早期脉冲残差网络架构存在的模型表示能力不足问题进行研究,通过修改脉冲残余块的结构顺序,进一步提高了网络性能。实验结果表明,所提方法比基于脉冲时间的最优训练算法有着明显的提升,相同架构下,在CIFAR10数据集上提升2.98%,在DVS-CIFAR10数据集上提升2.26%。 展开更多
关键词 脉冲神经网络 脉冲时间依赖 误差反向传播 脉冲神经网络训练算法
在线阅读 下载PDF
列车优化操纵速度模式曲线生成的智能计算研究 被引量:27
12
作者 金炜东 靳蕃 +2 位作者 李崇维 胡飞 苟先太 《铁道学报》 EI CAS CSCD 北大核心 1998年第5期47-52,共6页
讨论了在起伏坡道线路上运行的列车节能操纵的优化计算问题,给出了一种局部优化与全局优化相配合的计算结构,用以生成列车优化操纵的速度模式曲线。以仿真计算获得局部优化规律,用神经网络实现局部优化规律的数据组织,应用遗传算法... 讨论了在起伏坡道线路上运行的列车节能操纵的优化计算问题,给出了一种局部优化与全局优化相配合的计算结构,用以生成列车优化操纵的速度模式曲线。以仿真计算获得局部优化规律,用神经网络实现局部优化规律的数据组织,应用遗传算法进行全局优化计算,获得了令人满意的结果。 展开更多
关键词 列车 优化操纵 遗传算法 速度模式曲线 节能操纵
在线阅读 下载PDF
基于遗传算法的人工神经网络 被引量:69
13
作者 李伟超 宋大猛 陈斌 《计算机工程与设计》 CSCD 北大核心 2006年第2期316-318,共3页
为克服和改进传统的BP算法的不足,发挥神经网络和遗传算法各自的优势,提出了一种基于遗传算法的神经网络二次训练方法。将遗传算法应用于神经网络的权值训练中,并用神经网络二次训练得到最终结果,降低了计算时间,是一种比较有效的方法。
关键词 BP算法 人工神经网络 遗传算法 二次训练 学习 权值
在线阅读 下载PDF
神经网络基于粒子群优化的学习算法研究 被引量:44
14
作者 刘洪波 王秀坤 孟军 《小型微型计算机系统》 CSCD 北大核心 2005年第4期638-640,共3页
研究神经网络基于粒子群优化的学习算法,将粒子群优化算法用于神经网络的学习训练,并与遗传算法进行了比较结果表明,神经网络基于粒子群优化的学习算法简单容易实现,而且能更快地收敛于最优解.
关键词 神经网络 粒子群优化 学习算法
在线阅读 下载PDF
基于改进BP神经网络的光伏发电系统输出功率短期预测模型 被引量:146
15
作者 丁明 王磊 毕锐 《电力系统保护与控制》 EI CSCD 北大核心 2012年第11期93-99,148,共8页
随着光伏发电系统的大规模应用,其输出功率预测技术可以有效地缓解该类随机能源对电力系统的不利影响。提出了一种基于改进BP神经网络的光伏发电系统输出功率短期预测模型,利用输出功率的历史值、过往及预测日气象信息,对输出功率进行... 随着光伏发电系统的大规模应用,其输出功率预测技术可以有效地缓解该类随机能源对电力系统的不利影响。提出了一种基于改进BP神经网络的光伏发电系统输出功率短期预测模型,利用输出功率的历史值、过往及预测日气象信息,对输出功率进行直接预测。通过对影响输出功率各项因素的分析,得出了预测模型输入变量选择的理论依据;为了提高模型在各种天气条件下的预测精度,提出了相似日选择算法和训练样本确定方法;针对传统BP学习算法易陷入局部极小点、收敛速度慢等缺陷,利用增加动量项和可变学习率相结合的方法对其进行了改进。最后通过预测结果分析,验证了所提模型和算法的有效性。 展开更多
关键词 预测 光伏发电系统 人工神经网络 相似日选择算法 训练样本确定方法 BP算法
在线阅读 下载PDF
过程神经元网络学习算法及软测量方法的研究 被引量:13
16
作者 刘载文 王正祥 +2 位作者 王小艺 杨斌 程志强 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第7期1456-1459,共4页
研究输入输出以及连接权函数均可为时间函数的过程神经元网络(process neural network,PNN)的学习算法,在基本算法上增加基函数展开系数的规一化处理、权函数动量项调整项,提出学习率自适应调整方法和加速网络收敛速度的改进算法。将过... 研究输入输出以及连接权函数均可为时间函数的过程神经元网络(process neural network,PNN)的学习算法,在基本算法上增加基函数展开系数的规一化处理、权函数动量项调整项,提出学习率自适应调整方法和加速网络收敛速度的改进算法。将过程神经元网络引入到生产过程质量参数的软测量,研究基于正交基展开的过程神经元网络算法,通过分析原网络收敛速度慢等问题,对传统BP算法加以改进,实现了污水处理过程出水水质BOD的预测,仿真取得较好的结果,实践证明这是一种时变过程参数软测量的新方法。 展开更多
关键词 过程元神经网络 训练速度 算法研究 软测量 污水处理
在线阅读 下载PDF
基于BP神经网络的森林火环境预测方法 被引量:12
17
作者 曾孝平 刘敬 +2 位作者 刘德 李永华 蒲秀娟 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第1期73-76,共4页
提出了一种基于BP神经网络的森林火环境预测新方法。该方法研究大气环流指数与森林火险的关系,将已有大气环流指数和森林火险等级数据对BP神经网络进行训练,利用BP网络反传学习,通过抑制性反馈和兴奋性前馈作用实现自组织学习,完成大气... 提出了一种基于BP神经网络的森林火环境预测新方法。该方法研究大气环流指数与森林火险的关系,将已有大气环流指数和森林火险等级数据对BP神经网络进行训练,利用BP网络反传学习,通过抑制性反馈和兴奋性前馈作用实现自组织学习,完成大气环流指数与森林火环境指数关系的非线性映射,对大量数据实现特征选择和森林火环境预测。它对春季和夏季的预测准确率分别为 89%和 82%,试验结果表明该方法的正确性和可行性。 展开更多
关键词 BP神经网络 训练算法 环流指数 森林火环境指数
在线阅读 下载PDF
基于遗传算法优化的BP神经网络在密度界面反演中的应用 被引量:18
18
作者 张代磊 黄大年 张冲 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2017年第2期580-588,共9页
BP神经网络方法在二维密度界面的反演中取得了较好的效果,但在反演三维界面时,由于模型更复杂、参数更多,BP神经网络的收敛速度和反演精度都有一定程度的下降。为了改善反演效果,本文利用遗传算法对BP神经网络的权值、阈值选择过程进行... BP神经网络方法在二维密度界面的反演中取得了较好的效果,但在反演三维界面时,由于模型更复杂、参数更多,BP神经网络的收敛速度和反演精度都有一定程度的下降。为了改善反演效果,本文利用遗传算法对BP神经网络的权值、阈值选择过程进行优化,获得了更好的网络模型;并将此模型应用于密度界面模型的反演中,预测误差从上百米减小到数十米,同时迭代计算步数减少了近2/3,有效减少了计算时间,反演结果更准确。利用基于遗传算法优化的BP神经网络反演了法国某地区莫霍面深度,预测相对误差仅为1.8%,取得了较好的应用效果。基于遗传算法优化的BP神经网络在密度界面的反演中具有良好的应用价值和研究前景。 展开更多
关键词 BP神经网络 遗传算法 密度界面反演 网络训练 优化
在线阅读 下载PDF
基于改进神经网络的渗透率预测方法 被引量:18
19
作者 杨建 杨程博 +2 位作者 张岩 崔力公 王龙飞 《岩性油气藏》 CSCD 2011年第1期98-102,共5页
由于传统BP算法具有收敛速度慢、易陷入局部极小值等不足,文中对其进行了改进。在Kozeny-Carman方程和杨正明研究的基础上,借助于MATLAB神经网络工具箱,建立了预测岩石渗透率的3层前馈型BP神经网络模型。对改进的神经网络模型进行的仿... 由于传统BP算法具有收敛速度慢、易陷入局部极小值等不足,文中对其进行了改进。在Kozeny-Carman方程和杨正明研究的基础上,借助于MATLAB神经网络工具箱,建立了预测岩石渗透率的3层前馈型BP神经网络模型。对改进的神经网络模型进行的仿真训练结果表明:改进模型具有更快的收敛速度和更高的精度,模型预测值与实验室测试值的一致性比较好,其相对误差小于10%,完全能够满足现场精度要求。 展开更多
关键词 BP神经网络 改进BP算法 网络仿真训练 MATLAB 渗透率预测
在线阅读 下载PDF
遗传算法优化的神经网络在SINS/GPS中的应用 被引量:12
20
作者 徐晓苏 周峰 +2 位作者 张涛 李瑶 田泽鑫 《中国惯性技术学报》 EI CSCD 北大核心 2015年第3期322-327,共6页
在不增加辅助系统的情况下,针对捷联惯性导航/全球定位组合导航系统(SINS/GPS)在GPS信号不可用时,其定位精度产生较大退化的问题,提出了遗传算法优化的径向基函数神经网络辅助组合导航系统定位的方法。当GPS信号可用时,采用遗传算法对... 在不增加辅助系统的情况下,针对捷联惯性导航/全球定位组合导航系统(SINS/GPS)在GPS信号不可用时,其定位精度产生较大退化的问题,提出了遗传算法优化的径向基函数神经网络辅助组合导航系统定位的方法。当GPS信号可用时,采用遗传算法对径向基函数神经网络进行优化训练;当GPS信号不可用时,利用遗传算法优化后的径向基函数神经网络预测卡尔曼滤波器量测输入中的速度误差信息,使得卡尔曼滤波器能够继续工作并提供速度校正量。跑车实验表明,通过对速度进行误差补偿能够有效地修正位置误差,以GPS信号断开180 s的结果作分析,纯SINS模式的东向和北向位置误差分别为35.1 m和38.8 m,而本文所提方法的误差分别为10.5 m和7.2 m,其定位精度提高较为显著。 展开更多
关键词 组合导航 径向基函数神经网络 遗传算法 卡尔曼滤波 训练模式
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部