A new method of surface chemical modification of nano-SiO2 is proposed in this paper. In the presence of catalyst, the active hydroxyl groups on the surface of nano-SiO2 reacted with AB2-type monomer (N, N-dihydroxye...A new method of surface chemical modification of nano-SiO2 is proposed in this paper. In the presence of catalyst, the active hydroxyl groups on the surface of nano-SiO2 reacted with AB2-type monomer (N, N-dihydroxyethyl-3-amino methyl propionate) by one-step polycondensation. And the product's Fourer transform infrared (FTIR) graphs and transmission electron microscopy(TEM) images proved that hyperbranched poly (amine-ester) was grafted on nano-SiO2 surface successfully. Results show that the modified nano-SiO2 exhibits excellent dispersion and stability in some solvents such as alcohol and chloroform.展开更多
基金Sponsored by the Ministerial Level Advanced Research Foundation (120701BQ0126)
文摘A new method of surface chemical modification of nano-SiO2 is proposed in this paper. In the presence of catalyst, the active hydroxyl groups on the surface of nano-SiO2 reacted with AB2-type monomer (N, N-dihydroxyethyl-3-amino methyl propionate) by one-step polycondensation. And the product's Fourer transform infrared (FTIR) graphs and transmission electron microscopy(TEM) images proved that hyperbranched poly (amine-ester) was grafted on nano-SiO2 surface successfully. Results show that the modified nano-SiO2 exhibits excellent dispersion and stability in some solvents such as alcohol and chloroform.