This article investigates the influence of the property of VGO derived from the Kazakhstan- Russian mixed crude on the hydrocracking catalyst. The influence of reaction temperature, reaction pressure, space velocity a...This article investigates the influence of the property of VGO derived from the Kazakhstan- Russian mixed crude on the hydrocracking catalyst. The influence of reaction temperature, reaction pressure, space velocity and hydrogen/oil ratio on the distribution and quality of products was analyzed with the optimal process regime determined, when the VGO was hydrocracked in the presence of the FC-16 catalyst.展开更多
Three different types of VGO were selected and cut into various distillates by true boiling-point distillation (TBD), and the distillates were further separated into different components (saturates, aromatics and r...Three different types of VGO were selected and cut into various distillates by true boiling-point distillation (TBD), and the distillates were further separated into different components (saturates, aromatics and resins) via solid phase extrac- tion (SPE). The hydrocarbon components in saturates and aromatics were characterized on the quasi-molecular level by GC/ MS and CJC/TOF MS. Cracking reactions of VGO, their distillates, and hydrocarbon components (saturates and aromatics) were performed on an ACE (model AP) unit. Nine correlation parameters (mainly based on the previous assumption of basic structure Units, BSU) which could better reflect the structures and compositions of hydrocarbons were put forward based on the quasi-molecular level analysis data, and correlated with FCC product distribution by multi-regression method. A series of correlation formulas were obtained. The formulas were further verified by comparing experimental and calculated FCC yields emanated from two other VGO feedstocks.展开更多
文摘This article investigates the influence of the property of VGO derived from the Kazakhstan- Russian mixed crude on the hydrocracking catalyst. The influence of reaction temperature, reaction pressure, space velocity and hydrogen/oil ratio on the distribution and quality of products was analyzed with the optimal process regime determined, when the VGO was hydrocracked in the presence of the FC-16 catalyst.
文摘Three different types of VGO were selected and cut into various distillates by true boiling-point distillation (TBD), and the distillates were further separated into different components (saturates, aromatics and resins) via solid phase extrac- tion (SPE). The hydrocarbon components in saturates and aromatics were characterized on the quasi-molecular level by GC/ MS and CJC/TOF MS. Cracking reactions of VGO, their distillates, and hydrocarbon components (saturates and aromatics) were performed on an ACE (model AP) unit. Nine correlation parameters (mainly based on the previous assumption of basic structure Units, BSU) which could better reflect the structures and compositions of hydrocarbons were put forward based on the quasi-molecular level analysis data, and correlated with FCC product distribution by multi-regression method. A series of correlation formulas were obtained. The formulas were further verified by comparing experimental and calculated FCC yields emanated from two other VGO feedstocks.