The impacts of HfOx inserting layer thickness on the electrical properties of the ZnO-based transparent resistance random access memory (TRRAM) device were investigated in this paper. The bipolar resistive switching...The impacts of HfOx inserting layer thickness on the electrical properties of the ZnO-based transparent resistance random access memory (TRRAM) device were investigated in this paper. The bipolar resistive switching behavior of a single ZnO film and bilayer HfOx/ZnO films as active layers for TRRAM devices was demonstrated. It was revealed that the bilayer TRRAM device with a 10-nm HfOx inserted layer had a more stable resistive switching behavior than other devices including the single layer device, as well as being forming free, and the transmittance was more than 80% in the visible region. For the HfOx/ZnO devices, the current conduction behavior was dominated by the space-charge-limited current mechanism in the low resistive state (LRS) and Schottky emission in the high resistive state (HRS), while the mechanism for single layer devices was controlled by ohmic conduction in the LRS and Poole-Frenkel emission in the HRS.展开更多
We report that fully transparent resistive random access memory (TRRAM) devices based on ITO/TiO2/ITO sandwich structure, which are prepared by the method of RF magnetron sputtering, exhibit excellent switching stab...We report that fully transparent resistive random access memory (TRRAM) devices based on ITO/TiO2/ITO sandwich structure, which are prepared by the method of RF magnetron sputtering, exhibit excellent switching stability. In the visible region (400 800 nm in wavelength) the TRRAM device has a transmittance of more than 80%. The fabricated TRRAM device shows a bipolar resistance switching behaviour at low voltage, while the retention test and rewrite cycles of more than 300,000 indicate the enhancement of switching capability. The mechanism of resistance switching is further explained by the forming and rupture processes of the filament in the TiO2 layer with the help of more oxygen vacancies which are provided by the transparent ITO electrodes.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2017yfb0405600)the National Natural Science Foundation of China(Grant Nos.61404091,61274113,61505144,51502203,and 51502204)the Natural Science Foundation of Tianjin City(Grant Nos.17JCYBJC16100 and 17JCZDJC31700)
文摘The impacts of HfOx inserting layer thickness on the electrical properties of the ZnO-based transparent resistance random access memory (TRRAM) device were investigated in this paper. The bipolar resistive switching behavior of a single ZnO film and bilayer HfOx/ZnO films as active layers for TRRAM devices was demonstrated. It was revealed that the bilayer TRRAM device with a 10-nm HfOx inserted layer had a more stable resistive switching behavior than other devices including the single layer device, as well as being forming free, and the transmittance was more than 80% in the visible region. For the HfOx/ZnO devices, the current conduction behavior was dominated by the space-charge-limited current mechanism in the low resistive state (LRS) and Schottky emission in the high resistive state (HRS), while the mechanism for single layer devices was controlled by ohmic conduction in the LRS and Poole-Frenkel emission in the HRS.
基金Project supported by the National Basic Research Program of China (Grant No. 2007CB925002)the National High Technology Research and Development Program of China (Grant No. 2008AA031401)and Chinese Academy of Sciences
文摘We report that fully transparent resistive random access memory (TRRAM) devices based on ITO/TiO2/ITO sandwich structure, which are prepared by the method of RF magnetron sputtering, exhibit excellent switching stability. In the visible region (400 800 nm in wavelength) the TRRAM device has a transmittance of more than 80%. The fabricated TRRAM device shows a bipolar resistance switching behaviour at low voltage, while the retention test and rewrite cycles of more than 300,000 indicate the enhancement of switching capability. The mechanism of resistance switching is further explained by the forming and rupture processes of the filament in the TiO2 layer with the help of more oxygen vacancies which are provided by the transparent ITO electrodes.