Laser-induced breakdown spectroscopy(LIBS) is a versatile tool for both qualitative and quantitative analysis.In this paper,LIBS combined with principal component analysis(PCA) and support vector machine(SVM) is...Laser-induced breakdown spectroscopy(LIBS) is a versatile tool for both qualitative and quantitative analysis.In this paper,LIBS combined with principal component analysis(PCA) and support vector machine(SVM) is applied to rock analysis.Fourteen emission lines including Fe,Mg,Ca,Al,Si,and Ti are selected as analysis lines.A good accuracy(91.38% for the real rock) is achieved by using SVM to analyze the spectroscopic peak area data which are processed by PCA.It can not only reduce the noise and dimensionality which contributes to improving the efficiency of the program,but also solve the problem of linear inseparability by combining PCA and SVM.By this method,the ability of LIBS to classify rock is validated.展开更多
A diode-pumped solid-state laser (DPSSL) with a high energetic stability and long service life is applied to ablate the steel samples instead of traditional Nd:YAG laser pumped by a xenon lamp, and several factors,...A diode-pumped solid-state laser (DPSSL) with a high energetic stability and long service life is applied to ablate the steel samples instead of traditional Nd:YAG laser pumped by a xenon lamp, and several factors, such as laser pulse energy, repetition rate and argon flow rate, that influence laser-induced breakdown spectroscopy (LIBS) analytical performance are investigated in detail. Under the optimal experiment conditions, the relative standard deviations for C, Si, Mn, Ni, Cr and Cu are 3.3%-8.9%, 0.9%-2.8%, 1.2%-4.1%, 1.7%-3.0%, 1.1%-3.4% and 2.5%-8.5%, respectively, with the corresponding relative errors of 1.1%-7.9%, 1.0%-6.3%, 0.4%-3.9%, 1.5%-6.3%, 1.2%-4.0% and 1.2%-6.4%. Compared with the results of the traditional spark discharge optical emission spectrometry technique, the analytical performance of LIBS is just a little inferior due to the less stable laser-induced plasma and smaller amount of ablated sample by the laser. However, the precision, detection limits and accuracy of LIBS obtained in our present work were sufficient to meet the requirements for process analysis. These technical performances of higher stability of output energy and longer service life for DPSSL, in comparison to the Q-switch laser pumped by xeon lamp, qualify it well for the real time online analysis for different industrial applications.展开更多
In this paper, two types of comparison analyses, bulk analysis and defect analysis, were carried out for marine steel. The results of laser-induced breakdown spectroscopy (LIBS) were compared with those of spark opt...In this paper, two types of comparison analyses, bulk analysis and defect analysis, were carried out for marine steel. The results of laser-induced breakdown spectroscopy (LIBS) were compared with those of spark optical emission spectrometry (Spark-OES) and scanning electron microscopy/energy dispersion spectroscopy (SEM/EDS) in the bulk and defect analyses. The comparison of the bulk analyses shows that the chemical contents of C, Si, Mn, P, S and Cr obtained from LIBS agree well with those determined using Spark-OES. The LIBS is slightly less precise than Spark-OES. Defects were characterized in the two-dimensional distribution analysis mode for Al, Mg, Ca, Si and other elements. Both the LIBS and SEM/EDS results show the enrichment of Al, Mg, Ca and Si at the defect position and the two methods agree well with each other. SEM/EDS cannot provide information about the difference in the chemical constituents when the differences between the defect position and the normal position are not significant. However, LIBS can provide this information, meaning that the sensitivity of LIBS is higher than that of SEM/EDS. LIBS can be used to rapidly characterize marine steel defects and provide guidance for improving metallurgical processes.展开更多
Improvement of measurement precision and repeatability is one of the issues currently faced by the laser-induced breakdown spectroscopy (LIBS) technique, which is expected to be capable of precise and accurate quant...Improvement of measurement precision and repeatability is one of the issues currently faced by the laser-induced breakdown spectroscopy (LIBS) technique, which is expected to be capable of precise and accurate quantitative analysis. It was found that there was great potential to improve the signal quality and repeatability by reducing the laser beam divergence angle using a suitable beam expander (BE). In the present work, the influences of several experimental parameters for the case with BE are studied in order to optimize the analytical performances: the signal to noise ratio (SNR) and the relative standard deviation (RSD). We demonstrate that by selecting the optimal experimental parameters, the BE-included LIBS setup can give higher SNR and lower RSD values of the line intensity normalized by the whole spectrum area. For validation purposes, support vector machine (SVM) regression combined with principal component analysis (PCA) was used to establish a calibration model to realize the quantitative analysis of the ash content. Good agreement has been found between the laboratory measurement results from the LIBS method and those from the traditional method. The measurement accuracy presented here for ash content analysis is estimated to be 0.31%, while the average relative error is 2.36%.展开更多
The influence of a vacuum on the laser-induced breakdown spectroscopy (LIBS) of carbon in the ultraviolet wavelength range is studied. Experiments are performed with graphite using a LIBS system, which consists of a...The influence of a vacuum on the laser-induced breakdown spectroscopy (LIBS) of carbon in the ultraviolet wavelength range is studied. Experiments are performed with graphite using a LIBS system, which consists of a 1064 nm Nd:YAG laser, a vacuum pump, a spectrometer and a vacuum chamber. The vacuum varies from 10 Pa to 1 atm. Atomic lines as well as singly and doubly charged ions are confirmed under the vacuums. A temporal evolution analysis of intensity is performed for the atomic lines of C I 193.09 nm and C I 247.86 nm under different vacuum conditions. Both time-integrated and time-resolved intensity evolutions under vacuums are achieved. The lifetimes of the two atomic lines have similar trends, which supports the point of view of a 'soft spot'. Variations of plasma temperature and electron density under different vacuums are measured. This study is helpful for research on carbon detection using LIBS under vacuum conditions.展开更多
Our recent work has determined the carbon content in a melting ferroalloy by laser- induced breakdown spectroscopy (LIBS). The emission spectrum of carbon that we obtained in the laboratory is suitable for carbon co...Our recent work has determined the carbon content in a melting ferroalloy by laser- induced breakdown spectroscopy (LIBS). The emission spectrum of carbon that we obtained in the laboratory is suitable for carbon content determination in a melting ferroalloy but we cannot get the expected results when this method is applied in industrial conditions: there is always an unacceptable error of around 4% between the actual value and the measured value. By comparing the measurement condition in the industrial condition with that in the laboratory, the results show that the temperature of the molten ferroalloy samples to be measured is constant under laboratory conditions while it decreases gradually under industrial conditions. However, temperature has a considerable impact on the measurement of carbon content, and this is the reason why there is always an error between the actual value and the measured value. In this paper we compare the errors of carbon content determination at different temperatures to find the optimum reference temperature range which can fit the requirements better in industrial conditions and, hence, make the measurement more accurate. The results of the comparative analyses show that the measured value of the carbon content in molten state (1620 K) is consistent with the nominal value of the solid standard sample (error within 0.7%). In fact, it is the most accurate measurement in the solid state. Based on this, we can effectively improve the accuracy of measurements in laboratory and can provide a reference standard of temperature for the measurement in industrial conditions.展开更多
Supervised learning methods(eg.PLS-DA,SVM,etc.) have been widely used with laser-induced breakdown spectroscopy(LIBS) to classify materials;however,it may induce a low correct classification rate if a test sample ...Supervised learning methods(eg.PLS-DA,SVM,etc.) have been widely used with laser-induced breakdown spectroscopy(LIBS) to classify materials;however,it may induce a low correct classification rate if a test sample type is not included in the training dataset.Unsupervised cluster analysis methods(hierarchical clustering analysis,K-means clustering analysis,and iterative self-organizing data analysis technique) are investigated in plastics classification based on the line intensities of LIBS emission in this paper.The results of hierarchical clustering analysis using four different similarity measuring methods(single linkage,complete linkage,unweighted pair-group average,and weighted pair-group average) are compared.In K-means clustering analysis,four kinds of choosing initial centers methods are applied in our case and their results are compared.The classification results of hierarchical clustering analysis,K-means clustering analysis,and ISODATA are analyzed.The experiment results demonstrated cluster analysis methods can be applied to plastics discrimination with LIBS.展开更多
In order to maintain the pipeline better and remove the dirt more effectively, it was necessary to analyze the contents of elements in dirt. Mg in soil outside of the pipe and the dirt inside of the pipe was quantitat...In order to maintain the pipeline better and remove the dirt more effectively, it was necessary to analyze the contents of elements in dirt. Mg in soil outside of the pipe and the dirt inside of the pipe was quantitatively analyzed and compared by using the laser-induced breakdown spectroscopy (LIBS). Firstly, Mg was quantitatively analyzed on the basis of Mg I 285.213 nm by calibration curve for integrated intensity and peak intensity of the spectrum before and after subtracting noise, respectively. Then calibration curves on the basis of Mg II 279.553 nm and Mg II 280.270 nm were analyzed. The results indicated that it is better to use integrated intensity after subtracting noise of the spectrum line with high relative intensity to make the calibration curve.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11075184)the Knowledge Innovation Program of the Chinese Academy of Sciences(CAS)(Grant No.Y03RC21124)the CAS President’s International Fellowship Initiative Foundation(Grant No.2015VMA007)
文摘Laser-induced breakdown spectroscopy(LIBS) is a versatile tool for both qualitative and quantitative analysis.In this paper,LIBS combined with principal component analysis(PCA) and support vector machine(SVM) is applied to rock analysis.Fourteen emission lines including Fe,Mg,Ca,Al,Si,and Ti are selected as analysis lines.A good accuracy(91.38% for the real rock) is achieved by using SVM to analyze the spectroscopic peak area data which are processed by PCA.It can not only reduce the noise and dimensionality which contributes to improving the efficiency of the program,but also solve the problem of linear inseparability by combining PCA and SVM.By this method,the ability of LIBS to classify rock is validated.
基金supported by the Development Fund of National Autonomous Demonstration Innovation Zone of Shandong Peninsula(Grant No.ZCQ17104)the National Key Research and Development Program of China(Grant No.2017YFB0305400)‘double hundred plan’ Yantai talent funding project
文摘A diode-pumped solid-state laser (DPSSL) with a high energetic stability and long service life is applied to ablate the steel samples instead of traditional Nd:YAG laser pumped by a xenon lamp, and several factors, such as laser pulse energy, repetition rate and argon flow rate, that influence laser-induced breakdown spectroscopy (LIBS) analytical performance are investigated in detail. Under the optimal experiment conditions, the relative standard deviations for C, Si, Mn, Ni, Cr and Cu are 3.3%-8.9%, 0.9%-2.8%, 1.2%-4.1%, 1.7%-3.0%, 1.1%-3.4% and 2.5%-8.5%, respectively, with the corresponding relative errors of 1.1%-7.9%, 1.0%-6.3%, 0.4%-3.9%, 1.5%-6.3%, 1.2%-4.0% and 1.2%-6.4%. Compared with the results of the traditional spark discharge optical emission spectrometry technique, the analytical performance of LIBS is just a little inferior due to the less stable laser-induced plasma and smaller amount of ablated sample by the laser. However, the precision, detection limits and accuracy of LIBS obtained in our present work were sufficient to meet the requirements for process analysis. These technical performances of higher stability of output energy and longer service life for DPSSL, in comparison to the Q-switch laser pumped by xeon lamp, qualify it well for the real time online analysis for different industrial applications.
基金supported by a Special Fund for Nationally Important Instruments of China(No.2012YQ20018208)
文摘In this paper, two types of comparison analyses, bulk analysis and defect analysis, were carried out for marine steel. The results of laser-induced breakdown spectroscopy (LIBS) were compared with those of spark optical emission spectrometry (Spark-OES) and scanning electron microscopy/energy dispersion spectroscopy (SEM/EDS) in the bulk and defect analyses. The comparison of the bulk analyses shows that the chemical contents of C, Si, Mn, P, S and Cr obtained from LIBS agree well with those determined using Spark-OES. The LIBS is slightly less precise than Spark-OES. Defects were characterized in the two-dimensional distribution analysis mode for Al, Mg, Ca, Si and other elements. Both the LIBS and SEM/EDS results show the enrichment of Al, Mg, Ca and Si at the defect position and the two methods agree well with each other. SEM/EDS cannot provide information about the difference in the chemical constituents when the differences between the defect position and the normal position are not significant. However, LIBS can provide this information, meaning that the sensitivity of LIBS is higher than that of SEM/EDS. LIBS can be used to rapidly characterize marine steel defects and provide guidance for improving metallurgical processes.
基金supported by the 973 Program of China(No.2012CB921603)National Natural Science Foundation of China(Nos.61475093,61127017,61178009,61108030,61378047,61275213,61475093,and 61205216)+3 种基金the National Key Technology R&D Program of China(No.2013BAC14B01)the Shanxi Natural Science Foundation(Nos.2013021004-1 and 2012021022-1)the Shanxi Scholarship Council of China(Nos.2013-011 and 2013-01)the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi,China
文摘Improvement of measurement precision and repeatability is one of the issues currently faced by the laser-induced breakdown spectroscopy (LIBS) technique, which is expected to be capable of precise and accurate quantitative analysis. It was found that there was great potential to improve the signal quality and repeatability by reducing the laser beam divergence angle using a suitable beam expander (BE). In the present work, the influences of several experimental parameters for the case with BE are studied in order to optimize the analytical performances: the signal to noise ratio (SNR) and the relative standard deviation (RSD). We demonstrate that by selecting the optimal experimental parameters, the BE-included LIBS setup can give higher SNR and lower RSD values of the line intensity normalized by the whole spectrum area. For validation purposes, support vector machine (SVM) regression combined with principal component analysis (PCA) was used to establish a calibration model to realize the quantitative analysis of the ash content. Good agreement has been found between the laboratory measurement results from the LIBS method and those from the traditional method. The measurement accuracy presented here for ash content analysis is estimated to be 0.31%, while the average relative error is 2.36%.
基金supported by the National Special Fund for the Development of Major Research Equipment and Instruments of China(No.2014YQ120351)
文摘The influence of a vacuum on the laser-induced breakdown spectroscopy (LIBS) of carbon in the ultraviolet wavelength range is studied. Experiments are performed with graphite using a LIBS system, which consists of a 1064 nm Nd:YAG laser, a vacuum pump, a spectrometer and a vacuum chamber. The vacuum varies from 10 Pa to 1 atm. Atomic lines as well as singly and doubly charged ions are confirmed under the vacuums. A temporal evolution analysis of intensity is performed for the atomic lines of C I 193.09 nm and C I 247.86 nm under different vacuum conditions. Both time-integrated and time-resolved intensity evolutions under vacuums are achieved. The lifetimes of the two atomic lines have similar trends, which supports the point of view of a 'soft spot'. Variations of plasma temperature and electron density under different vacuums are measured. This study is helpful for research on carbon detection using LIBS under vacuum conditions.
基金supported by National Natural Science Foundation of China(No.51374040)supported by Laser-Induced Plasma Spectroscopy Equipment Development and Application,China(No.2014YQ120351)
文摘Our recent work has determined the carbon content in a melting ferroalloy by laser- induced breakdown spectroscopy (LIBS). The emission spectrum of carbon that we obtained in the laboratory is suitable for carbon content determination in a melting ferroalloy but we cannot get the expected results when this method is applied in industrial conditions: there is always an unacceptable error of around 4% between the actual value and the measured value. By comparing the measurement condition in the industrial condition with that in the laboratory, the results show that the temperature of the molten ferroalloy samples to be measured is constant under laboratory conditions while it decreases gradually under industrial conditions. However, temperature has a considerable impact on the measurement of carbon content, and this is the reason why there is always an error between the actual value and the measured value. In this paper we compare the errors of carbon content determination at different temperatures to find the optimum reference temperature range which can fit the requirements better in industrial conditions and, hence, make the measurement more accurate. The results of the comparative analyses show that the measured value of the carbon content in molten state (1620 K) is consistent with the nominal value of the solid standard sample (error within 0.7%). In fact, it is the most accurate measurement in the solid state. Based on this, we can effectively improve the accuracy of measurements in laboratory and can provide a reference standard of temperature for the measurement in industrial conditions.
基金supported by Beijing Natural Science Foundation of China(No.4132063)
文摘Supervised learning methods(eg.PLS-DA,SVM,etc.) have been widely used with laser-induced breakdown spectroscopy(LIBS) to classify materials;however,it may induce a low correct classification rate if a test sample type is not included in the training dataset.Unsupervised cluster analysis methods(hierarchical clustering analysis,K-means clustering analysis,and iterative self-organizing data analysis technique) are investigated in plastics classification based on the line intensities of LIBS emission in this paper.The results of hierarchical clustering analysis using four different similarity measuring methods(single linkage,complete linkage,unweighted pair-group average,and weighted pair-group average) are compared.In K-means clustering analysis,four kinds of choosing initial centers methods are applied in our case and their results are compared.The classification results of hierarchical clustering analysis,K-means clustering analysis,and ISODATA are analyzed.The experiment results demonstrated cluster analysis methods can be applied to plastics discrimination with LIBS.
基金supported partly by the Natural Science Foundation of Hubei Province,China(No.2012FFB00105)partly by the Science Research Program of Education Department of Hubei Province,China(No.B2013288)
文摘In order to maintain the pipeline better and remove the dirt more effectively, it was necessary to analyze the contents of elements in dirt. Mg in soil outside of the pipe and the dirt inside of the pipe was quantitatively analyzed and compared by using the laser-induced breakdown spectroscopy (LIBS). Firstly, Mg was quantitatively analyzed on the basis of Mg I 285.213 nm by calibration curve for integrated intensity and peak intensity of the spectrum before and after subtracting noise, respectively. Then calibration curves on the basis of Mg II 279.553 nm and Mg II 280.270 nm were analyzed. The results indicated that it is better to use integrated intensity after subtracting noise of the spectrum line with high relative intensity to make the calibration curve.