To improve heat-transfer performance, a novel integral three-dimensional fin-structure on the plat surface was presented to increase the evaporation efficiency. The three-dimensional fin-structure is composed of a spi...To improve heat-transfer performance, a novel integral three-dimensional fin-structure on the plat surface was presented to increase the evaporation efficiency. The three-dimensional fin-structure is composed of a spiral micro-groove and multi radial micro-grooves. Both ploughing-extrusion(P-E) and stamping were used to form the integral-fins with a connection between radial and circumferential directions. Based on the SEM results, the relationships among P-E speed v P-E, rotational speed np and feed fp, and among interference length Li, stamping feed angle θc and stamping depth ac were analyzed. The effects of processing parameters on the groove morphology and the matching relationship between parameters were also discussed. The integral finned surface with micro-grooves and cracks can be obtained under such processing conditions: P-E depth ap=0.3 mm, ac=0.3 mm, the interval of helical groove dp=1.24 mm, θc=2° and np=50 r/min.展开更多
基金Projects(51205072,51275099)supported by the National Natural Science Foundation of ChinaProjects(S2013010013469,S2011040004110)supported by the Natural Science Foundation of Guangdong Province,China+1 种基金Projects(Yq2013127,2013KJCX0143)supported by Research Program of Guangdong Province UniversityProject(2012A083)supported by Guangzhou Prefecture University Research Program,China
文摘To improve heat-transfer performance, a novel integral three-dimensional fin-structure on the plat surface was presented to increase the evaporation efficiency. The three-dimensional fin-structure is composed of a spiral micro-groove and multi radial micro-grooves. Both ploughing-extrusion(P-E) and stamping were used to form the integral-fins with a connection between radial and circumferential directions. Based on the SEM results, the relationships among P-E speed v P-E, rotational speed np and feed fp, and among interference length Li, stamping feed angle θc and stamping depth ac were analyzed. The effects of processing parameters on the groove morphology and the matching relationship between parameters were also discussed. The integral finned surface with micro-grooves and cracks can be obtained under such processing conditions: P-E depth ap=0.3 mm, ac=0.3 mm, the interval of helical groove dp=1.24 mm, θc=2° and np=50 r/min.