期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
若干-非线性Hamilton算子的等价条件
1
作者 马文秀 《上海交通大学学报》 EI CAS 1987年第5期99-108,128,共11页
在非线性演化方程的广义Hamiltom结构之研究中,对Hamilton算子的研究是其重要的一个方面。本文构造了若干种关于未知函数向量非线性的矩阵微分算子,基于Gel'fand的代数理论,研究了这些算子的Hamilton性,并得到了它们为Hamilton算子... 在非线性演化方程的广义Hamiltom结构之研究中,对Hamilton算子的研究是其重要的一个方面。本文构造了若干种关于未知函数向量非线性的矩阵微分算子,基于Gel'fand的代数理论,研究了这些算子的Hamilton性,并得到了它们为Hamilton算子的关于其系数的代数条件,继而从所得的关系式出发,讨论了各种特殊情形,且举例说明了上述非平凡关于未知函数向量非线性的Hamilton算子的存在性。 展开更多
关键词 矩阵微分算子 李代数 HAMILTON 算子 -非线性算子 系数条件
在线阅读 下载PDF
A novel robust approach for SLAM of mobile robot
2
作者 马家辰 张琦 马立勇 《Journal of Central South University》 SCIE EI CAS 2014年第6期2208-2215,共8页
The task of simultaneous localization and mapping (SLAM) is to build environmental map and locate the position of mobile robot at the same time. FastSLAM 2.0 is one of powerful techniques to solve the SLAM problem. ... The task of simultaneous localization and mapping (SLAM) is to build environmental map and locate the position of mobile robot at the same time. FastSLAM 2.0 is one of powerful techniques to solve the SLAM problem. However, there are two obvious limitations in FastSLAM 2.0, one is the linear approximations of nonlinear functions which would cause the filter inconsistent and the other is the "particle depletion" phenomenon. A kind of PSO & Hjj-based FastSLAM 2.0 algorithm is proposed. For maintaining the estimation accuracy, H~ filter is used instead of EKF for overcoming the inaccuracy caused by the linear approximations of nonlinear functions. The unreasonable proposal distribution of particle greatly influences the pose state estimation of robot. A new sampling strategy based on PSO (particle swarm optimization) is presented to solve the "particle depletion" phenomenon and improve the accuracy of pose state estimation. The proposed approach overcomes the obvious drawbacks of standard FastSLAM 2.0 algorithm and enhances the robustness and efficiency in the parts of consistency of filter and accuracy of state estimation in SLAM. Simulation results demonstrate the superiority of the proposed approach. 展开更多
关键词 mobile robot simultaneous localization and mapping (SLAM) improved FastSLAM 2.0 H∞ filter particle swarmoptimization (PSO)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部