期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进的Faster R-CNN的齿轮外观缺陷识别研究
被引量:
9
1
作者
吉卫喜
杜猛
+1 位作者
彭威
徐杰
《系统仿真学报》
CAS
CSCD
北大核心
2019年第11期2198-2205,共8页
为了实现齿轮外观缺陷自动化识别,提高齿轮产品的合格率。针对传统缺陷识别算法泛化差,人工提取特征耗时,提出了一种改进的较快的基于区域卷积神经网络(FasterR-CNN)的齿轮缺陷识别模型。设计出VGG-2CF网络,提高识别较小目标的能力;引入...
为了实现齿轮外观缺陷自动化识别,提高齿轮产品的合格率。针对传统缺陷识别算法泛化差,人工提取特征耗时,提出了一种改进的较快的基于区域卷积神经网络(FasterR-CNN)的齿轮缺陷识别模型。设计出VGG-2CF网络,提高识别较小目标的能力;引入AM-Softmax损失函数,以减小类内特征的差异性,进一步增大类之间差异性;结合机器学习算法中的F度量值(F-measure),提出一种AMF-Softmax损失函数,解决数据不平衡的问题。实验结果表明,提出的改进模型具有较高的识别率,适用于齿轮外观的自动化检测。
展开更多
关键词
齿轮缺陷识别
FASTER
R-CNN
VGG-2CF
AMF-Softmax损失函数
在线阅读
下载PDF
职称材料
题名
基于改进的Faster R-CNN的齿轮外观缺陷识别研究
被引量:
9
1
作者
吉卫喜
杜猛
彭威
徐杰
机构
江南大学机械工程学院
江南大学江苏省食品制造装备重点实验室
出处
《系统仿真学报》
CAS
CSCD
北大核心
2019年第11期2198-2205,共8页
基金
国家自然科学基金(11402264)
文摘
为了实现齿轮外观缺陷自动化识别,提高齿轮产品的合格率。针对传统缺陷识别算法泛化差,人工提取特征耗时,提出了一种改进的较快的基于区域卷积神经网络(FasterR-CNN)的齿轮缺陷识别模型。设计出VGG-2CF网络,提高识别较小目标的能力;引入AM-Softmax损失函数,以减小类内特征的差异性,进一步增大类之间差异性;结合机器学习算法中的F度量值(F-measure),提出一种AMF-Softmax损失函数,解决数据不平衡的问题。实验结果表明,提出的改进模型具有较高的识别率,适用于齿轮外观的自动化检测。
关键词
齿轮缺陷识别
FASTER
R-CNN
VGG-2CF
AMF-Softmax损失函数
Keywords
gear defect recognition
Faster R-CNN
VGG-2CF
AMF-Softmax loss function
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进的Faster R-CNN的齿轮外观缺陷识别研究
吉卫喜
杜猛
彭威
徐杰
《系统仿真学报》
CAS
CSCD
北大核心
2019
9
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部