期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
基于自适应权重的黑翅鸢算法及其工程应用
1
作者 龙文 张洁 徐明 《制造技术与机床》 北大核心 2025年第7期141-150,共10页
针对原始黑翅鸢算法(black-winged kite algorithm,BKA)容易陷入局部最优、收敛精度不够等问题,提出基于自适应权重的改进黑翅鸢算法(improved BKA,IBKA)。首先,运用Fuch混沌映射策略初始化种群,提高种群的多样性;其次,在黑翅鸢攻击行... 针对原始黑翅鸢算法(black-winged kite algorithm,BKA)容易陷入局部最优、收敛精度不够等问题,提出基于自适应权重的改进黑翅鸢算法(improved BKA,IBKA)。首先,运用Fuch混沌映射策略初始化种群,提高种群的多样性;其次,在黑翅鸢攻击行为中加入自适应权重,更好地平衡局部寻优和全局搜索能力;最后,在黑翅鸢迁徙行为中引入莱维飞行,有效增强算法全局搜索能力。将IBKA对29个CEC2017测试函数进行求解,并与原始BKA算法、鲸鱼优化算法(whale optimization algorithm,WOA)、斑马优化算法(zebra optimization algorithm,ZOA)、正弦余弦算法(sine cosine algorithm,SCA)以及蜣螂优化算法(dung beetle optimization,DBO)进行对比。结果表明,IBKA算法的收敛速度和精度优于对比算法。通过求解3个工程设计约束优化问题,验证了IBKA算法能有效解决实际工程优化问题。 展开更多
关键词 算法 Fuch混沌映射 自适应权重 莱维飞行 工程优化
在线阅读 下载PDF
基于黑翅鸢优化算法的分数阶Riccati微分方程数值解法
2
作者 胡行华 张瑶 《应用数学》 北大核心 2025年第3期751-761,共11页
利用黑翅鸢优化算法全局优化的优点,提出了基于Haar小波函数逼近和黑翅鸢优化算法的分数阶Riccati微分方程数值解法.结合Haar小波给出分数阶Riccati微分方程数值解的一般形式,将原问题转化为以逼近函数待定系数为变量的单目标优化问题,... 利用黑翅鸢优化算法全局优化的优点,提出了基于Haar小波函数逼近和黑翅鸢优化算法的分数阶Riccati微分方程数值解法.结合Haar小波给出分数阶Riccati微分方程数值解的一般形式,将原问题转化为以逼近函数待定系数为变量的单目标优化问题,再利用黑翅鸢优化算法对其进行求解.进而得到分数阶Riccati微分方程的Haar小波近似解.对不同分数阶Riccati微分方程实施数值实验评估,并对比现有数值方法所得结果,体现本方法的准确性和稳定性. 展开更多
关键词 优化算法 HAAR小波 小波函数逼近 优化问题 数值解
在线阅读 下载PDF
基于改进黑翅鸢优化算法的动态无人机路径规划 被引量:1
3
作者 王兴旺 张清杨 +1 位作者 姜守勇 董永权 《计算机应用研究》 北大核心 2025年第5期1401-1408,共8页
针对复杂山体地形和障碍物威胁区域环境下的无人机(UAV)路径规划问题,提出改进黑翅鸢优化算法的动态无人机路径规划方法,旨在提升无人机在动态复杂环境下的路径规划性能及安全性。首先,通过设计山体地形、障碍物、动态威胁区域和动态目... 针对复杂山体地形和障碍物威胁区域环境下的无人机(UAV)路径规划问题,提出改进黑翅鸢优化算法的动态无人机路径规划方法,旨在提升无人机在动态复杂环境下的路径规划性能及安全性。首先,通过设计山体地形、障碍物、动态威胁区域和动态目标,建立山体动态环境模型;其次,提出一种自适应攻击策略,加快算法前期收敛速度,平衡算法全局搜索和局部挖掘的能力,设计线性锁优策略,获取优质个体,加速种群收敛;最后,通过设计可变缩放因子改进差分进化策略,并将其融入黑翅鸢算法中,以提高算法避免陷入局部最优的能力,同时提出了动态响应机制以应对环境动态变化。为了验证所提算法的性能,与一些现存的智能算法在CEC2022测试函数中和不同规模的环境模型中进行实验对比。结果显示,与标准黑翅鸢算法相比,所提算法的收敛精度提高了6.25%,标准差减少了54.6%。实验结果表明,所提改进黑翅鸢优化算法在收敛速度和收敛精度方面具有显著优势,能够有效处理动态无人机路径规划问题,提高无人机在复杂环境中的路径规划性能。 展开更多
关键词 优化算法 自适应攻击策略 线性锁优策略 差分进化 动态响应机制 动态无人机路径规划
在线阅读 下载PDF
基于改进黑翅鸢算法的非均匀森林冠层图像增强
4
作者 赵晓寒 朱良宽 +1 位作者 王璟瑀 Alaa M.E.Mohamed 《西北林学院学报》 北大核心 2025年第4期85-96,共12页
针对传统图像增强方法在处理非均匀森林冠层图像时存在欠增强、过度增强和细节丢失的缺陷,提出一种基于改进黑翅鸢优化算法(improved black-winged kite algorithm, IBKA)的森林冠层图像增强方法。通过局部对比度增加图像明暗之间的差异... 针对传统图像增强方法在处理非均匀森林冠层图像时存在欠增强、过度增强和细节丢失的缺陷,提出一种基于改进黑翅鸢优化算法(improved black-winged kite algorithm, IBKA)的森林冠层图像增强方法。通过局部对比度增加图像明暗之间的差异性;全局自适应Gamma校正均衡明暗之间的亮度;高斯模糊处理丰富图像中的细节;倒置探索优化策略和迁移中的躲避行为提高了黑翅鸢算法的探索能力和跳出局部最优解的能力,IBKA用于寻找增强方法中的最优参数,实现图像的自适应增强。在森林冠层图像增强中,所提方法在熵值和FSIM上优于对比算法的同时也获得了适中的平均梯度和像素均值。表明所提方法全面提高了非均匀森林冠层图像的质量。 展开更多
关键词 森林冠层 图像增强 算法 局部对比度增强 全局自适应Gamma校正
在线阅读 下载PDF
融合信赖域与非线性单纯形法的黑翅鸢优化算法
5
作者 王玉芳 程培浩 闫明 《计算机科学与探索》 北大核心 2025年第7期1789-1807,共19页
针对黑翅鸢优化算法(BKA)因缺乏种群内信息交流而导致搜索力度受限以及迁徙阶段种群跟随最优个体迁徙的盲目性而导致种群多样性下降的问题,提出融合信赖域和非线性单纯形法的黑翅鸢优化算法(TDNSBKA)。对黑翅鸢初始种群利用精英动态反... 针对黑翅鸢优化算法(BKA)因缺乏种群内信息交流而导致搜索力度受限以及迁徙阶段种群跟随最优个体迁徙的盲目性而导致种群多样性下降的问题,提出融合信赖域和非线性单纯形法的黑翅鸢优化算法(TDNSBKA)。对黑翅鸢初始种群利用精英动态反向学习策略进行初始化,提高初始解的质量;在算法的攻击阶段,引入信赖域变异策略,实现种群内的信息交流,提高算法的收敛精度并平衡算法的探索与开发能力;在算法的迁徙阶段,对适应度最差的个体采用非线性单纯形法的反射操作,减小种群跟随领导者迁徙的盲目性,提高种群的多样性。建立TDNSBKA算法的Markov链模型,证明了其具有全局收敛性。仿真实验基于30维与50维的CEC2017测试函数,验证了3种改进策略的有效性,将改进的算法TDNSBKA和对比算法进行收敛性分析、Wilcoxon秩和检验,证明了TDNSBKA具有更优秀的收敛性能以及鲁棒性。将TDNSBKA应用在齿轮系设计和压力容器设计的求解上,验证了其在实际应用中的有用性。 展开更多
关键词 优化算法 动态反向学习 信赖域变异 非线性单纯形法 MARKOV链
在线阅读 下载PDF
改进黑翅鸢算法的1D-2D-GAF-PCNN-GRU-MSA弓网电弧检测应用
6
作者 李斌 舒嘉辉 +1 位作者 严灵潇 田浩 《电子测量与仪器学报》 CSCD 北大核心 2024年第10期201-211,共11页
针对高速列车运行时高速气流场对受电弓碳滑板与接触网之间的接触压力和电弧状态影响。通过计算得出更符合实际状态下的接触压力和电弧状态模型,建立了考虑高速气流场影响的弓网电弧实验模型。提出了改进黑翅鸢算法(IBKA)的1D-2D-GAF-PC... 针对高速列车运行时高速气流场对受电弓碳滑板与接触网之间的接触压力和电弧状态影响。通过计算得出更符合实际状态下的接触压力和电弧状态模型,建立了考虑高速气流场影响的弓网电弧实验模型。提出了改进黑翅鸢算法(IBKA)的1D-2D-GAF-PCNN-GRU-MSA故障检测模型。应用格拉姆角场(GAF)将一维接触电压信号时序图象化转换为二维图像并通过双通道卷积神经网络(PCNN)进行特征识别。另将一维时序信号通过门控循环单元(GRU)捕捉时序信号特征。将一维时序信号特征与二维图像特征进行特征融合,弥补各自局限性。针对模型中的难以确定的学习率、门控循环单元网络层神经元个数等参数,融入改进黑翅鸢算法(IBKA)对参数寻优使模型更加合理。最后,融合多头自注意力机制提高模型准确率。将提出的模型与其他3种模型分别对3组不同实验条件的弓网电弧模型进行检测,验证提出的模型具有较强的鲁棒性和较高的准确性。 展开更多
关键词 高速气流场 改进算法 特征融合 格拉姆角场 故障检测
在线阅读 下载PDF
融合多策略改进的黑翅鸢优化算法 被引量:1
7
作者 周建新 侯自川 李忠泽 《电子测量技术》 北大核心 2024年第22期104-110,共7页
针对基本黑翅鸢算法(BKA)收敛速度慢,易陷入局部最优等问题,提出了一种融合多策略改进的黑翅鸢算法(EBKA)。首先引入了追踪猎物位置更新策略,提高算法全局搜索能力,加快收敛速度。其次在攻击阶段提出自适应t螺旋策略,防止算法陷入局部... 针对基本黑翅鸢算法(BKA)收敛速度慢,易陷入局部最优等问题,提出了一种融合多策略改进的黑翅鸢算法(EBKA)。首先引入了追踪猎物位置更新策略,提高算法全局搜索能力,加快收敛速度。其次在攻击阶段提出自适应t螺旋策略,防止算法陷入局部最优。最后在迁移阶段,当黑翅鸢领导者失去领导作用时,提出了Levy切线飞行策略,避免算法早熟收敛。为了验证算法的改进效果,选取8种测试函数进行测试,并与5种群智能算法进行对比。实验结果表明:EBKA与其他群智能算法对比,在单峰函数上均能快速寻到理论最优值0,在多峰函数F_(5)、F_(6)、F_(8)中30次左右就能收敛到最优值,并且F_(6)、F_(7)可以收敛到理论最优值0。证明了EBKA具有很好的收敛性能、稳定性和全局寻优能力。 展开更多
关键词 优化算法 追踪猎物策略 自适应t螺旋 Levy切线飞行
在线阅读 下载PDF
基于TBKA-P&O算法的光伏系统MPPT控制研究
8
作者 王欣峰 姜鑫杰 +1 位作者 张丕 赵思琴 《电子测量技术》 北大核心 2025年第7期36-45,共10页
针对光伏阵列输出功率曲线在局部遮阴条件下存在多峰值的特性,导致传统算法在最大功率点跟踪(MPPT)过程中易陷入局部最优的问题,本文提出一种基于改进黑翅鸢算法(TBKA)与扰动观察法(P&O)相结合的MPPT控制策略,称为TBKA-P&O算法... 针对光伏阵列输出功率曲线在局部遮阴条件下存在多峰值的特性,导致传统算法在最大功率点跟踪(MPPT)过程中易陷入局部最优的问题,本文提出一种基于改进黑翅鸢算法(TBKA)与扰动观察法(P&O)相结合的MPPT控制策略,称为TBKA-P&O算法。在全局搜索阶段,首先通过Tent-Logistic-Cosine混沌映射初始化种群,其次引入切线飞行策略优化TBKA算法的搜索效率和收敛精度,同时设计了一种基于贪婪策略的动态透镜成像反向学习策略用于提升搜索多样性,避免陷入局部最优;在局部搜索阶段,结合P&O实现最大功率点的快速定位和高精度跟踪。为验证算法的有效性,构建了包含传统P&O算法、BKA-P&O算法、量子CS-P&O算法以及TBKA-P&O算法的光伏发电系统仿真模型,实验结果显示,TBKA-P&O在4种工况下的跟踪精度分别为100%、99.97%、99.96%和99.96%,跟踪时间分别为0.093、0.090、0.077和0.047 s。与其他算法相比,TBKA-P&O算法在动态追踪速度、稳态跟踪精度及功率振荡控制方面均表现出显著优势。 展开更多
关键词 光伏发电系统 最大功率点追踪 局部遮阴 改进算法 扰动观察法
在线阅读 下载PDF
基于融合聚类和BKA-VMD-TCN-BiLSTM的短期光伏功率预测
9
作者 王瑞 李哲 逯静 《电子科技大学学报》 北大核心 2025年第4期592-603,共12页
针对光伏系统功率输出因天气条件波动大且随机性强的特点,提出了一种基于融合聚类的短期光伏功率组合预测模型。首先通过改进的Kmeans聚类算法(GMKmeans)将原始光伏数据集分为晴天、阴天和雨天3种天气模式。在此基础上,为解决变分模态分... 针对光伏系统功率输出因天气条件波动大且随机性强的特点,提出了一种基于融合聚类的短期光伏功率组合预测模型。首先通过改进的Kmeans聚类算法(GMKmeans)将原始光伏数据集分为晴天、阴天和雨天3种天气模式。在此基础上,为解决变分模态分解(VMD)分解数量和惩罚因子难以人工确定的问题,引入黑翅鸢优化算法(BKA)实现VMD参数的自适应优化。随后利用优化后的VMD将光伏功率时间序列数据分解成多个本征模态函数(Intrinsic Mode Functions,IMF),确保模型能够更深入地理解和模拟光伏功率随时间演变的复杂模式。最后,针对各IMF分量分别构建时序卷积网络(TCN)-双向长短期记忆网络(BiLSTM)组合预测模型,并将预测结果叠加重构,实现对整体光伏功率输出的高精度预测。实验结果表明,该预测模型提升了光伏功率预测的准确性和有效性。 展开更多
关键词 短期光伏功率预测 变分模态分解 优化算法 时序卷积网络 双向长短期记忆网络
在线阅读 下载PDF
基于SVMD-BKA-Transformer的IGBT寿命预测模型
10
作者 邓阳 柴琳 汪亮 《半导体技术》 北大核心 2025年第7期698-706,共9页
绝缘栅双极型晶体管(IGBT)在持续运行过程中易老化失效,引发电力电子装置故障,因此需对IGBT进行寿命预测。提出了一种改进模型用于IGBT寿命预测。首先,以集射极关断尖峰电压(V_(ce-p))为退化特征,对IGBT进行功率循环加速老化试验;获取... 绝缘栅双极型晶体管(IGBT)在持续运行过程中易老化失效,引发电力电子装置故障,因此需对IGBT进行寿命预测。提出了一种改进模型用于IGBT寿命预测。首先,以集射极关断尖峰电压(V_(ce-p))为退化特征,对IGBT进行功率循环加速老化试验;获取相关参数数据并进行处理;利用逐次变分模态分解(SVMD)技术将退化特征数据分解为多个模态。其次,构建Transformer模型,并采用黑翅鸢算法(BKA)寻找其最优超参数以提升预测精度。最后,通过实际IGBT退化特征数据对所提模型进行性能验证。实验结果表明,SVMD-BKA-Transformer模型提升了预测精度:决定系数(R^(2))达到0.9583,平均绝对误差(MAE)降至0.0295 V,均方根误差(RMSE)减小至0.0365 V,性能优于对比模型。 展开更多
关键词 绝缘栅双极型晶体管(IGBT) 寿命预测 模态分解 算法(bka) TRANSFORMER
在线阅读 下载PDF
改进黑翅鸢算法优化神经网络的室内定位
11
作者 杨晶晶 万里宏 +2 位作者 张雪明 麦鴚 雷俊杰 《重庆理工大学学报(自然科学)》 2025年第5期229-237,共9页
针对传统无线信号的路径损耗模型(path loss model,PLM)在预测距离值时易受多径效应影响,导致在复杂室内环境中定位精度下降的问题,提出一种基于改进黑翅鸢算法(improved black-winged kite algorithm,IBKA)优化反向传播(back propagati... 针对传统无线信号的路径损耗模型(path loss model,PLM)在预测距离值时易受多径效应影响,导致在复杂室内环境中定位精度下降的问题,提出一种基于改进黑翅鸢算法(improved black-winged kite algorithm,IBKA)优化反向传播(back propagation,BP)神经网络的室内定位算法。分别引入Tent混沌映射、透镜成像反向学习策略和黄金正弦策略优化黑翅鸢算法,通过基准测试函数测试证实了IBKA拥有更好的性能,通过IBKA优化神经网络算法的初始权值和阈值建立IBKA-BP神经网络测距模型。在实验室内采集RSSI信号样本数据进行分析,结果表明所提IBKA-BP优化算法均方根误差为21.42 cm,小于PLM、GWO-BP、BKA-BP和ISSA-BP的63.25、47.04、33.77、28.78 cm,且收敛速度更快,在复杂室内环境下定位性能更好。 展开更多
关键词 改进算法 BP神经网络 RSSI测距算法 路径损耗模型
在线阅读 下载PDF
基于混沌映射与光学现象改进的黑翅鸢优化算法
12
作者 王伟 广家和 +2 位作者 徐兴国 孙渝景 夏毅强 《科学技术与工程》 2025年第25期10800-10809,共10页
针对黑翅鸢优化算法(black-winged kite optimization algorithm,BKA)在全局探索与局部开发能力之间存在的不平衡,以及易陷入局部最优解的问题,提出了一种改进的黑翅鸢优化算法(improved BKA,IBKA)。首先,采用Tent混沌映射策略对种群进... 针对黑翅鸢优化算法(black-winged kite optimization algorithm,BKA)在全局探索与局部开发能力之间存在的不平衡,以及易陷入局部最优解的问题,提出了一种改进的黑翅鸢优化算法(improved BKA,IBKA)。首先,采用Tent混沌映射策略对种群进行初始化,提高种群的多样性。其次,在BKA的捕食行为中引入了一种动态透镜成像学习策略,以提高算法摆脱局部最优解的概率。最后,在BKA的迁移过程中集成了夫琅禾费衍射搜索策略,旨在提升算法的性能,实现快速寻优。实验结果表明,所提出的改进方法能够有效增强算法性能,经过改进后的IBKA具有更高的搜索精度、更快的收敛速度,并且展现出较强的实用性。 展开更多
关键词 优化算法 Tent混沌映射策略 动态透镜成像学习策略 夫琅禾费衍射搜索策略
在线阅读 下载PDF
一种基于IBKA-GBDT的火控系统故障预测方法
13
作者 于昂 李英顺 +2 位作者 郭占男 曹胜冲 赵恒 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第12期169-177,共9页
火控系统是坦克作战的核心组件,通过提供高精度目标打击、快速反应以及全天候作战支持,显著提升坦克的战场生存能力和作战效能,因此对其进行故障预测极为重要。为提高故障预测的准确性并减少成本,提出了一种基于混合策略改进的黑翅鸢算... 火控系统是坦克作战的核心组件,通过提供高精度目标打击、快速反应以及全天候作战支持,显著提升坦克的战场生存能力和作战效能,因此对其进行故障预测极为重要。为提高故障预测的准确性并减少成本,提出了一种基于混合策略改进的黑翅鸢算法优化梯度提升决策树的模型预测方法。采用灰色关联度方法处理原始数据,以减少数据冗余和降低维度,并选择关联度高的属性来构建数据集。引入Logistic混沌映射、螺旋搜索策略以及三角形游走策略对黑翅鸢算法进行改进,进一步优化梯度提升决策树关键参数,构建故障预测模型实现对预测数据的故障预测。同时,选取火控系统电气部件试验台采集的信号数据作为实验对象,设置相同参数与传统梯度提升决策树、鲸鱼优化算法和黑翅鸢优化算法优化的梯度提升决策树模型进行实验对比。实验结果表明,该方法能够快速准确地对处理后的数据集进行故障预测,平均准确率达到了96.74%,为火控系统的后续维护和维修提供了重要依据。 展开更多
关键词 火控系统 故障预测 优化算法 梯度提升决策树 灰色关联度分析
在线阅读 下载PDF
随机环境下设备关键部件多目标分阶段顺序维修模型与方法 被引量:1
14
作者 梁佩 邱浩波 +3 位作者 孟磊 蒋琛 许丹阳 高亮 《计算机集成制造系统》 北大核心 2025年第4期1346-1357,共12页
基于考虑维修环境的随机性、决策目标的多样性以及提高传统顺序维修策略实操性的现实需求,提出随机环境下的多目标分阶段顺序维修策略,建立以维修费用率最小化与可用度最大化为目标,以可靠度为约束的多目标随机规划数学模型。根据所建... 基于考虑维修环境的随机性、决策目标的多样性以及提高传统顺序维修策略实操性的现实需求,提出随机环境下的多目标分阶段顺序维修策略,建立以维修费用率最小化与可用度最大化为目标,以可靠度为约束的多目标随机规划数学模型。根据所建立模型的随机、多目标特性,设计了一种结合了随机仿真方法的多目标黑翅鸢优化算法进行求解。多目标黑翅鸢优化算法和随机仿真方法分别用于搜索候选解和在随机环境下评估解的适应度值。以某船舶关键部件为例,将所设计方法与非支配排序遗传算法Ⅱ、基于分解的多目标进化算法和多目标粒子群优化算法进行对比分析,实验结果验证了所提模型与算法在解决该问题上的可行性和高效性。 展开更多
关键词 多目标分阶段顺序维修 可靠性 可用度 随机仿真方法 多目标优化算法
在线阅读 下载PDF
基于IBK-IPS的电驱车间空调系统节能优化方法
15
作者 龚小容 王鑫 +2 位作者 熊维清 王溏靓 张洪铭 《华南理工大学学报(自然科学版)》 北大核心 2025年第7期80-92,共13页
针对电驱车间空调系统运行能耗高和工作效率低的问题,基于IBK-IPS算法提出了一种考虑空调系统各设备相互约束的动态节能优化方法。首先,分析空调系统各设备之间的影响机理,建立各设备的能耗和约束条件数学模型,构建系统运行能耗优化目... 针对电驱车间空调系统运行能耗高和工作效率低的问题,基于IBK-IPS算法提出了一种考虑空调系统各设备相互约束的动态节能优化方法。首先,分析空调系统各设备之间的影响机理,建立各设备的能耗和约束条件数学模型,构建系统运行能耗优化目标函数;接着,提出了一种基于改进黑翅鸢与粒子群(IBK-IPS)的算法,对空调系统各设备的水温、流量和风量等运行参数进行优化,以提高空调系统运行参数控制的精度和效果;然后,利用Simulink平台建立空调系统冷却水系统、冷冻水系统的能耗仿真模型,并通过仿真实验来验证运行参数优化的效果和准确性;最后,将该方法在某电驱车间进行实际应用,以验证所提方法的实际效果和可行性。仿真实验及实际应用测试结果表明:系统的运行能耗得到有效降低,节能率达到11.23%~34.68%;系统的运行能效得到有效优化,运行能效提升了11.53%~41.75%;相较于PS、BK、BK-PS算法,IBK-IPS算法的节能效果最优,且收敛速度分别提升了27.27%、61.90%、69.23%;在实际应用测试中,优化后系统在5种不同负荷下的节能率分别为22.61%、17.24%、7.48%、14.97%、12.64%。综上所述,该文提出的节能优化方法能够有效地解决电驱车间空调系统运行能耗高和工作效率低的问题,具有良好的节能效果和实用性,可为空调系统节能优化研究提供新的思路。 展开更多
关键词 电驱车间 空调系统 相互约束 改进的与粒子群算法 动态节能优化方法
在线阅读 下载PDF
基于IBKA优化的主动升沉补偿自抗扰控制系统
16
作者 李佑祺 何震 +1 位作者 赵宇明 李智刚 《舰船科学技术》 2025年第15期84-89,共6页
针对多变海况导致海上母船的吊放载荷产生升沉运动,进而影响水下作业安全的问题。基于主动式升沉补偿控制方法,以提高主动式升沉补偿系统的控制精度与稳定性为目标,提出一种基于混合策略改进的黑翅鸢算法(Improved Black Winged kite Al... 针对多变海况导致海上母船的吊放载荷产生升沉运动,进而影响水下作业安全的问题。基于主动式升沉补偿控制方法,以提高主动式升沉补偿系统的控制精度与稳定性为目标,提出一种基于混合策略改进的黑翅鸢算法(Improved Black Winged kite Algorithm,IBKA)用来优化主动升沉补偿自抗扰控制系统。首先,构建主动升沉补偿系统模型并设计线性自抗扰控制器(Linear Active Disturbance Rejection Control,LADRC);然后,针对LADRC参数调优的困难性,利用IBKA实现LADRC参数自适应整定;最后,通过在不同工况下进行仿真实验,IBKA-LADRC控制器均表现出良好的升沉补偿控制效果,满足系统要求。 展开更多
关键词 主动式升沉补偿 自抗扰控制 优化算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部