期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
基于黑翅鸢优化算法的分数阶Riccati微分方程数值解法
1
作者 胡行华 张瑶 《应用数学》 北大核心 2025年第3期751-761,共11页
利用黑翅鸢优化算法全局优化的优点,提出了基于Haar小波函数逼近和黑翅鸢优化算法的分数阶Riccati微分方程数值解法.结合Haar小波给出分数阶Riccati微分方程数值解的一般形式,将原问题转化为以逼近函数待定系数为变量的单目标优化问题,... 利用黑翅鸢优化算法全局优化的优点,提出了基于Haar小波函数逼近和黑翅鸢优化算法的分数阶Riccati微分方程数值解法.结合Haar小波给出分数阶Riccati微分方程数值解的一般形式,将原问题转化为以逼近函数待定系数为变量的单目标优化问题,再利用黑翅鸢优化算法对其进行求解.进而得到分数阶Riccati微分方程的Haar小波近似解.对不同分数阶Riccati微分方程实施数值实验评估,并对比现有数值方法所得结果,体现本方法的准确性和稳定性. 展开更多
关键词 黑翅鸢优化算法 HAAR小波 小波函数逼近 优化问题 数值解
在线阅读 下载PDF
基于混沌映射与光学现象改进的黑翅鸢优化算法
2
作者 王伟 广家和 +2 位作者 徐兴国 孙渝景 夏毅强 《科学技术与工程》 北大核心 2025年第25期10800-10809,共10页
针对黑翅鸢优化算法(black-winged kite optimization algorithm,BKA)在全局探索与局部开发能力之间存在的不平衡,以及易陷入局部最优解的问题,提出了一种改进的黑翅鸢优化算法(improved BKA,IBKA)。首先,采用Tent混沌映射策略对种群进... 针对黑翅鸢优化算法(black-winged kite optimization algorithm,BKA)在全局探索与局部开发能力之间存在的不平衡,以及易陷入局部最优解的问题,提出了一种改进的黑翅鸢优化算法(improved BKA,IBKA)。首先,采用Tent混沌映射策略对种群进行初始化,提高种群的多样性。其次,在BKA的捕食行为中引入了一种动态透镜成像学习策略,以提高算法摆脱局部最优解的概率。最后,在BKA的迁移过程中集成了夫琅禾费衍射搜索策略,旨在提升算法的性能,实现快速寻优。实验结果表明,所提出的改进方法能够有效增强算法性能,经过改进后的IBKA具有更高的搜索精度、更快的收敛速度,并且展现出较强的实用性。 展开更多
关键词 黑翅鸢优化算法 Tent混沌映射策略 动态透镜成像学习策略 夫琅禾费衍射搜索策略
在线阅读 下载PDF
基于改进黑翅鸢优化算法的动态无人机路径规划 被引量:1
3
作者 王兴旺 张清杨 +1 位作者 姜守勇 董永权 《计算机应用研究》 北大核心 2025年第5期1401-1408,共8页
针对复杂山体地形和障碍物威胁区域环境下的无人机(UAV)路径规划问题,提出改进黑翅鸢优化算法的动态无人机路径规划方法,旨在提升无人机在动态复杂环境下的路径规划性能及安全性。首先,通过设计山体地形、障碍物、动态威胁区域和动态目... 针对复杂山体地形和障碍物威胁区域环境下的无人机(UAV)路径规划问题,提出改进黑翅鸢优化算法的动态无人机路径规划方法,旨在提升无人机在动态复杂环境下的路径规划性能及安全性。首先,通过设计山体地形、障碍物、动态威胁区域和动态目标,建立山体动态环境模型;其次,提出一种自适应攻击策略,加快算法前期收敛速度,平衡算法全局搜索和局部挖掘的能力,设计线性锁优策略,获取优质个体,加速种群收敛;最后,通过设计可变缩放因子改进差分进化策略,并将其融入黑翅鸢算法中,以提高算法避免陷入局部最优的能力,同时提出了动态响应机制以应对环境动态变化。为了验证所提算法的性能,与一些现存的智能算法在CEC2022测试函数中和不同规模的环境模型中进行实验对比。结果显示,与标准黑翅鸢算法相比,所提算法的收敛精度提高了6.25%,标准差减少了54.6%。实验结果表明,所提改进黑翅鸢优化算法在收敛速度和收敛精度方面具有显著优势,能够有效处理动态无人机路径规划问题,提高无人机在复杂环境中的路径规划性能。 展开更多
关键词 黑翅鸢优化算法 自适应攻击策略 线性锁优策略 差分进化 动态响应机制 动态无人机路径规划
在线阅读 下载PDF
融合信赖域与非线性单纯形法的黑翅鸢优化算法
4
作者 王玉芳 程培浩 闫明 《计算机科学与探索》 北大核心 2025年第7期1789-1807,共19页
针对黑翅鸢优化算法(BKA)因缺乏种群内信息交流而导致搜索力度受限以及迁徙阶段种群跟随最优个体迁徙的盲目性而导致种群多样性下降的问题,提出融合信赖域和非线性单纯形法的黑翅鸢优化算法(TDNSBKA)。对黑翅鸢初始种群利用精英动态反... 针对黑翅鸢优化算法(BKA)因缺乏种群内信息交流而导致搜索力度受限以及迁徙阶段种群跟随最优个体迁徙的盲目性而导致种群多样性下降的问题,提出融合信赖域和非线性单纯形法的黑翅鸢优化算法(TDNSBKA)。对黑翅鸢初始种群利用精英动态反向学习策略进行初始化,提高初始解的质量;在算法的攻击阶段,引入信赖域变异策略,实现种群内的信息交流,提高算法的收敛精度并平衡算法的探索与开发能力;在算法的迁徙阶段,对适应度最差的个体采用非线性单纯形法的反射操作,减小种群跟随领导者迁徙的盲目性,提高种群的多样性。建立TDNSBKA算法的Markov链模型,证明了其具有全局收敛性。仿真实验基于30维与50维的CEC2017测试函数,验证了3种改进策略的有效性,将改进的算法TDNSBKA和对比算法进行收敛性分析、Wilcoxon秩和检验,证明了TDNSBKA具有更优秀的收敛性能以及鲁棒性。将TDNSBKA应用在齿轮系设计和压力容器设计的求解上,验证了其在实际应用中的有用性。 展开更多
关键词 黑翅鸢优化算法 动态反向学习 信赖域变异 非线性单纯形法 MARKOV链
在线阅读 下载PDF
融合多策略改进的黑翅鸢优化算法 被引量:5
5
作者 周建新 侯自川 李忠泽 《电子测量技术》 北大核心 2024年第22期104-110,共7页
针对基本黑翅鸢算法(BKA)收敛速度慢,易陷入局部最优等问题,提出了一种融合多策略改进的黑翅鸢算法(EBKA)。首先引入了追踪猎物位置更新策略,提高算法全局搜索能力,加快收敛速度。其次在攻击阶段提出自适应t螺旋策略,防止算法陷入局部... 针对基本黑翅鸢算法(BKA)收敛速度慢,易陷入局部最优等问题,提出了一种融合多策略改进的黑翅鸢算法(EBKA)。首先引入了追踪猎物位置更新策略,提高算法全局搜索能力,加快收敛速度。其次在攻击阶段提出自适应t螺旋策略,防止算法陷入局部最优。最后在迁移阶段,当黑翅鸢领导者失去领导作用时,提出了Levy切线飞行策略,避免算法早熟收敛。为了验证算法的改进效果,选取8种测试函数进行测试,并与5种群智能算法进行对比。实验结果表明:EBKA与其他群智能算法对比,在单峰函数上均能快速寻到理论最优值0,在多峰函数F_(5)、F_(6)、F_(8)中30次左右就能收敛到最优值,并且F_(6)、F_(7)可以收敛到理论最优值0。证明了EBKA具有很好的收敛性能、稳定性和全局寻优能力。 展开更多
关键词 黑翅鸢优化算法 追踪猎物策略 自适应t螺旋 Levy切线飞行
在线阅读 下载PDF
基于IBKA优化的主动升沉补偿自抗扰控制系统
6
作者 李佑祺 何震 +1 位作者 赵宇明 李智刚 《舰船科学技术》 北大核心 2025年第15期84-89,共6页
针对多变海况导致海上母船的吊放载荷产生升沉运动,进而影响水下作业安全的问题。基于主动式升沉补偿控制方法,以提高主动式升沉补偿系统的控制精度与稳定性为目标,提出一种基于混合策略改进的黑翅鸢算法(Improved Black Winged kite Al... 针对多变海况导致海上母船的吊放载荷产生升沉运动,进而影响水下作业安全的问题。基于主动式升沉补偿控制方法,以提高主动式升沉补偿系统的控制精度与稳定性为目标,提出一种基于混合策略改进的黑翅鸢算法(Improved Black Winged kite Algorithm,IBKA)用来优化主动升沉补偿自抗扰控制系统。首先,构建主动升沉补偿系统模型并设计线性自抗扰控制器(Linear Active Disturbance Rejection Control,LADRC);然后,针对LADRC参数调优的困难性,利用IBKA实现LADRC参数自适应整定;最后,通过在不同工况下进行仿真实验,IBKA-LADRC控制器均表现出良好的升沉补偿控制效果,满足系统要求。 展开更多
关键词 主动式升沉补偿 自抗扰控制 黑翅鸢优化算法
在线阅读 下载PDF
基于融合聚类和BKA-VMD-TCN-BiLSTM的短期光伏功率预测
7
作者 王瑞 李哲 逯静 《电子科技大学学报》 北大核心 2025年第4期592-603,共12页
针对光伏系统功率输出因天气条件波动大且随机性强的特点,提出了一种基于融合聚类的短期光伏功率组合预测模型。首先通过改进的Kmeans聚类算法(GMKmeans)将原始光伏数据集分为晴天、阴天和雨天3种天气模式。在此基础上,为解决变分模态分... 针对光伏系统功率输出因天气条件波动大且随机性强的特点,提出了一种基于融合聚类的短期光伏功率组合预测模型。首先通过改进的Kmeans聚类算法(GMKmeans)将原始光伏数据集分为晴天、阴天和雨天3种天气模式。在此基础上,为解决变分模态分解(VMD)分解数量和惩罚因子难以人工确定的问题,引入黑翅鸢优化算法(BKA)实现VMD参数的自适应优化。随后利用优化后的VMD将光伏功率时间序列数据分解成多个本征模态函数(Intrinsic Mode Functions,IMF),确保模型能够更深入地理解和模拟光伏功率随时间演变的复杂模式。最后,针对各IMF分量分别构建时序卷积网络(TCN)-双向长短期记忆网络(BiLSTM)组合预测模型,并将预测结果叠加重构,实现对整体光伏功率输出的高精度预测。实验结果表明,该预测模型提升了光伏功率预测的准确性和有效性。 展开更多
关键词 短期光伏功率预测 变分模态分解 黑翅鸢优化算法 时序卷积网络 双向长短期记忆网络
在线阅读 下载PDF
随机环境下设备关键部件多目标分阶段顺序维修模型与方法 被引量:2
8
作者 梁佩 邱浩波 +3 位作者 孟磊 蒋琛 许丹阳 高亮 《计算机集成制造系统》 北大核心 2025年第4期1346-1357,共12页
基于考虑维修环境的随机性、决策目标的多样性以及提高传统顺序维修策略实操性的现实需求,提出随机环境下的多目标分阶段顺序维修策略,建立以维修费用率最小化与可用度最大化为目标,以可靠度为约束的多目标随机规划数学模型。根据所建... 基于考虑维修环境的随机性、决策目标的多样性以及提高传统顺序维修策略实操性的现实需求,提出随机环境下的多目标分阶段顺序维修策略,建立以维修费用率最小化与可用度最大化为目标,以可靠度为约束的多目标随机规划数学模型。根据所建立模型的随机、多目标特性,设计了一种结合了随机仿真方法的多目标黑翅鸢优化算法进行求解。多目标黑翅鸢优化算法和随机仿真方法分别用于搜索候选解和在随机环境下评估解的适应度值。以某船舶关键部件为例,将所设计方法与非支配排序遗传算法Ⅱ、基于分解的多目标进化算法和多目标粒子群优化算法进行对比分析,实验结果验证了所提模型与算法在解决该问题上的可行性和高效性。 展开更多
关键词 多目标分阶段顺序维修 可靠性 可用度 随机仿真方法 多目标黑翅鸢优化算法
在线阅读 下载PDF
机电作动器故障诊断方法及其可解释性分析
9
作者 姚智敏 陈换过 苏世弘 《机电工程》 北大核心 2025年第10期1837-1850,1887,共15页
针对现存机电作动器(EMA)故障诊断方法中决策过程不清晰和可解释性不足的问题,提出了一种基于轻量级梯度提升机(LightGBM)的故障诊断方法,并利用SHAP框架对诊断模型进行了可解释性分析。首先,提取了多源信号的时域和频域特征,并结合随... 针对现存机电作动器(EMA)故障诊断方法中决策过程不清晰和可解释性不足的问题,提出了一种基于轻量级梯度提升机(LightGBM)的故障诊断方法,并利用SHAP框架对诊断模型进行了可解释性分析。首先,提取了多源信号的时域和频域特征,并结合随机森林(RF)和最大互信息数(MIC)对特征进行了筛选,降低了特征集和模型的复杂性;然后,提出了一种基于黑翅鸢优化算法(BKA)的LightGBM故障诊断方法,使用BKA对LightGBM模型的多参数进行了同步优化,对故障类型进行了判断;最后,引入SHAP框架对故障诊断模型进行了可解释性分析,直观展示了故障诊断决策过程及其关键影响因素。研究结果表明:BKA-LightGBM在仿真数据上的诊断准确率可达99.69%,在试验数据上的诊断准确率达到97.60%,不仅在故障识别精度方面表现优越,还能直观揭示特征对模型决策的影响过程和重要性,展现出优异的准确性、鲁棒性和可解释性。 展开更多
关键词 机电作动器 黑翅鸢优化算法 轻量级梯度提升机 可解释性 SHAP框架 随机森林 最大互信息数
在线阅读 下载PDF
基于MVMD-BKA-Transformer的短期光伏功率预测
10
作者 黄瑞承 成燕 +1 位作者 查航伟 董国鹏 《电源技术》 北大核心 2025年第10期2182-2190,共9页
针对传统分解预测方法忽略多元气象因素分解时自身在时域及频域上的耦合关系,及Transformer训练时间长、学习效率低等问题,提出基于多元变分模态分解(MVMD)和黑翅鸢优化算法(BKA)改进的Transformer的短期光伏功率预测方法。利用K-means... 针对传统分解预测方法忽略多元气象因素分解时自身在时域及频域上的耦合关系,及Transformer训练时间长、学习效率低等问题,提出基于多元变分模态分解(MVMD)和黑翅鸢优化算法(BKA)改进的Transformer的短期光伏功率预测方法。利用K-means算法,根据辐照度将数据分类为α类和β类,并使用MVMD将多元气象因素及光伏功率分解为频率对齐的多元本征模态函数,保留原始序列耦合性的基础上,提高气象因素的平稳性。针对多元本征模态函数,分别构建BKA改进过的Transformer预测模型。选用澳大利亚沙漠知识太阳能中心(DKASC)的数据集进行验证与对比。实验仿真结果显示,提出的模型各项误差指标表现最优,具有较高的预测精度。 展开更多
关键词 光伏功率预测 多元变分模态分解 黑翅鸢优化算法 TRANSFORMER
在线阅读 下载PDF
一种基于IBKA-GBDT的火控系统故障预测方法
11
作者 于昂 李英顺 +2 位作者 郭占男 曹胜冲 赵恒 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第12期169-177,共9页
火控系统是坦克作战的核心组件,通过提供高精度目标打击、快速反应以及全天候作战支持,显著提升坦克的战场生存能力和作战效能,因此对其进行故障预测极为重要。为提高故障预测的准确性并减少成本,提出了一种基于混合策略改进的黑翅鸢算... 火控系统是坦克作战的核心组件,通过提供高精度目标打击、快速反应以及全天候作战支持,显著提升坦克的战场生存能力和作战效能,因此对其进行故障预测极为重要。为提高故障预测的准确性并减少成本,提出了一种基于混合策略改进的黑翅鸢算法优化梯度提升决策树的模型预测方法。采用灰色关联度方法处理原始数据,以减少数据冗余和降低维度,并选择关联度高的属性来构建数据集。引入Logistic混沌映射、螺旋搜索策略以及三角形游走策略对黑翅鸢算法进行改进,进一步优化梯度提升决策树关键参数,构建故障预测模型实现对预测数据的故障预测。同时,选取火控系统电气部件试验台采集的信号数据作为实验对象,设置相同参数与传统梯度提升决策树、鲸鱼优化算法和黑翅鸢优化算法优化的梯度提升决策树模型进行实验对比。实验结果表明,该方法能够快速准确地对处理后的数据集进行故障预测,平均准确率达到了96.74%,为火控系统的后续维护和维修提供了重要依据。 展开更多
关键词 火控系统 故障预测 黑翅鸢优化算法 梯度提升决策树 灰色关联度分析
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部