期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于GA-BP神经网络和特征向量优化组合的黄瓜叶片病斑识别 被引量:8
1
作者 李颀 赵洁 +2 位作者 杨柳 王俊 高一星 《浙江农业学报》 CSCD 北大核心 2019年第3期487-495,共9页
针对家庭种植水培黄瓜中用户难以准确识别病害的问题,设计了一种基于图像处理的黄瓜叶片病斑识别系统。应用自适应小波对原始图像进行降噪处理,在HSV空间通过阈值分割结合形态学操作获得理想的黄瓜叶片图像,并通过自适应阈值分离病斑,... 针对家庭种植水培黄瓜中用户难以准确识别病害的问题,设计了一种基于图像处理的黄瓜叶片病斑识别系统。应用自适应小波对原始图像进行降噪处理,在HSV空间通过阈值分割结合形态学操作获得理想的黄瓜叶片图像,并通过自适应阈值分离病斑,提取病斑形态学、颜色和纹理原始特征参数。利用GA-BP神经网络定义原始特征参数对分类结果的灵敏度,递归剔除灵敏度较低的若干特征,降低特征参数的维数。根据优化后的特征参数组合,利用支持向量机对黄瓜炭疽病和白粉病进行识别。实验结果表明,本方法对黄瓜炭疽病和白粉病的综合分类正确率在96%以上。设计的方法有效提高了黄瓜病害的识别率,并为其他作物病害的智能识别提供了借鉴。 展开更多
关键词 黄瓜叶片病斑 GA-BP神经网络 灵敏度 特征向量优化组合 支持向量机 识别
在线阅读 下载PDF
基于优化PCNN模型的黄瓜叶片病斑提取方法 被引量:1
2
作者 刘祖鹏 《江苏农业科学》 2018年第18期216-221,共6页
黄瓜叶部病斑的精确提取是计算机视觉技术在黄瓜病害识别系统中应用的关键。由于黄瓜叶部病斑形态小、光照不均匀、背景复杂等特性,导致现有的病斑提取方法精度较差。针对这一问题,提出一种基于优化脉冲耦合神经网络(pulse coupled neur... 黄瓜叶部病斑的精确提取是计算机视觉技术在黄瓜病害识别系统中应用的关键。由于黄瓜叶部病斑形态小、光照不均匀、背景复杂等特性,导致现有的病斑提取方法精度较差。针对这一问题,提出一种基于优化脉冲耦合神经网络(pulse coupled neural network,简称PCNN)模型的黄瓜叶片病斑精确提取方法。首先,对采集的病斑叶片进行Lab颜色空间变换,通过对颜色分量的平均值和高斯滤波结果进行差值计算,获取病斑叶片的频率调谐视觉显著性图;接着,对病斑图像进行HSI颜色空间变换,提取色调(hue,简称H)分量,进行色调的均衡优化,并通过融合优化后的H参量来增强病斑叶片的频率调谐视觉显著性图;最后,对传统PCNN模型进行简化,构建网络参量的自适应更新规则,并将融合后的显著性图作为模型的输入参量进行病斑的分割和形态学处理,获取病斑的提取结果。结果显示,本研究方法能够实现在光照度改变、背景干扰等不同复杂环境下对黄瓜常见病斑图像进行精确提取,试验结果为后续的病害精确识别奠定了较好的基础。 展开更多
关键词 智能化农业 计算机视觉 黄瓜叶片 提取 脉冲耦合神经网络模型
在线阅读 下载PDF
基于区分矩阵的属性约简算法的作物病害识别方法 被引量:1
3
作者 张会敏 张云龙 +1 位作者 张善文 雷迎科 《江苏农业科学》 北大核心 2015年第1期387-389,共3页
利用作物叶片症状进行作物病害识别是植保中的一个重要研究内容。提出了一种基于区分矩阵属性约简的黄瓜病害叶片图像分割与病害识别方法。首先,利用最大类间方差法对黄瓜病害叶片图像进行病斑分割;其次,提取病斑图像的36个分类特征;再... 利用作物叶片症状进行作物病害识别是植保中的一个重要研究内容。提出了一种基于区分矩阵属性约简的黄瓜病害叶片图像分割与病害识别方法。首先,利用最大类间方差法对黄瓜病害叶片图像进行病斑分割;其次,提取病斑图像的36个分类特征;再次,利用基于区分矩阵的属性约简算法对36个特征进行特征选择;最后,利用最近邻分类器进行病害识别。在3种常见黄瓜病害叶片图像数据库上的试验结果表明,该方法是有效可行的,能够为基于病害叶片的作物病害识别系统研究提供参考。 展开更多
关键词 粗糙集 图像分割 最大类间方差法 害识别 黄瓜叶片病斑
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部