Types and structure of plant communities in the Yellow River Delta were investigated by using detrended canonical correspondence analyses (DCCAs) and a two-way indicator species analysis (TWINSPAN). The distributi...Types and structure of plant communities in the Yellow River Delta were investigated by using detrended canonical correspondence analyses (DCCAs) and a two-way indicator species analysis (TWINSPAN). The distribution pattern and influential factors of the plant communities were also analyzed by testing elevation, slope, soil characteristics, longitude and latitude of 134 vegetation samples collected by representative plot sampling methods. Results showed that all the 134 vegetation samples could be divided into seven vegetation groups, separately dominated by Robinia pseucdoacacia, Imperata cylindrical, Miscanthus saccharifleus, Suaeda salsa, Aeluropus sinensis, Phragmites australis and Tamarix chinensis. The vegetation distribution pattern was mainly related to elevation, ground water depth and soil characteristics such as salinity and soluble potassium. Among the factors affecting distribution pattern of the plant communities, the species matrix explained by non-spatial environmental variation accounts for 45.2% of total variation. Spatial variation and spatial-structured environmental variation explain 11.8%, and 2.2%, respectively. Remained 40.8% of undetermined variation is attributed to biological and stochastic factors.展开更多
The relationship between eco-hydrographic benefit of forest vegetation and climatic environmental factors is one of the focuses in the research on environmental protection and ecosystem countermeasures in Wetland. Th...The relationship between eco-hydrographic benefit of forest vegetation and climatic environmental factors is one of the focuses in the research on environmental protection and ecosystem countermeasures in Wetland. The runoff, sediment and soil moisture rate dynamics in Robinia pseudoacacia plantation and its clearcut area were investigated in the natural runoff experiment plots in Yellow River Delta Wet- land, Shandong Province, China. The correlation of height increment ofR. pseudoacacia with nine climate factors such as light, water, heat, etc. was analyzed by stepwise regression analysis. The results showed that the amounts of runoff and sediment in clearcut area of R. pseudoacacia were 53.9%-150.8% and 172.8%-387.1% higher than that in Robinia pseudoacacia plantation, respectively. The runoff peak value in R. pseudoacacia stand was obviously lower than that in clerarcut area, meantime, the occurrence of runoffpeak in R. pseudoacacia stand was 25 min later than in its clerarcut area. The soil moisture rates in R. pseudoacacia stand and its clearcut varied periodically with annual rainfall precipitation in both dry season and humid season. The annual mean soil moisture rate in R. pseudoacacia stand was 23.3%-25.6% higher than that in its clearcut area. Meanwhile, a regression model reflecting the correlation between the height increment of R. pseudoacacia and climatic factors was developed by stepwise regression procedure method. It showed that the light was the most important factor for the height increment ofR. pseudoacacia, followed by water and heat factors.展开更多
基金Foundation project: This study was financially supported by the Na- tional Natural Science Foundation of China (No. 40771172) and the orientation project of the Chinese Academy of Sciences (No. kzcx2-yw-308)
文摘Types and structure of plant communities in the Yellow River Delta were investigated by using detrended canonical correspondence analyses (DCCAs) and a two-way indicator species analysis (TWINSPAN). The distribution pattern and influential factors of the plant communities were also analyzed by testing elevation, slope, soil characteristics, longitude and latitude of 134 vegetation samples collected by representative plot sampling methods. Results showed that all the 134 vegetation samples could be divided into seven vegetation groups, separately dominated by Robinia pseucdoacacia, Imperata cylindrical, Miscanthus saccharifleus, Suaeda salsa, Aeluropus sinensis, Phragmites australis and Tamarix chinensis. The vegetation distribution pattern was mainly related to elevation, ground water depth and soil characteristics such as salinity and soluble potassium. Among the factors affecting distribution pattern of the plant communities, the species matrix explained by non-spatial environmental variation accounts for 45.2% of total variation. Spatial variation and spatial-structured environmental variation explain 11.8%, and 2.2%, respectively. Remained 40.8% of undetermined variation is attributed to biological and stochastic factors.
基金the National "11th Five Year" Plan of Science and technology (2006BAD26B06,2006BAD03A1205) Ecological Restore Project of Water Resources Ministry of China (2006-2008)
文摘The relationship between eco-hydrographic benefit of forest vegetation and climatic environmental factors is one of the focuses in the research on environmental protection and ecosystem countermeasures in Wetland. The runoff, sediment and soil moisture rate dynamics in Robinia pseudoacacia plantation and its clearcut area were investigated in the natural runoff experiment plots in Yellow River Delta Wet- land, Shandong Province, China. The correlation of height increment ofR. pseudoacacia with nine climate factors such as light, water, heat, etc. was analyzed by stepwise regression analysis. The results showed that the amounts of runoff and sediment in clearcut area of R. pseudoacacia were 53.9%-150.8% and 172.8%-387.1% higher than that in Robinia pseudoacacia plantation, respectively. The runoff peak value in R. pseudoacacia stand was obviously lower than that in clerarcut area, meantime, the occurrence of runoffpeak in R. pseudoacacia stand was 25 min later than in its clerarcut area. The soil moisture rates in R. pseudoacacia stand and its clearcut varied periodically with annual rainfall precipitation in both dry season and humid season. The annual mean soil moisture rate in R. pseudoacacia stand was 23.3%-25.6% higher than that in its clearcut area. Meanwhile, a regression model reflecting the correlation between the height increment of R. pseudoacacia and climatic factors was developed by stepwise regression procedure method. It showed that the light was the most important factor for the height increment ofR. pseudoacacia, followed by water and heat factors.