期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于STSV-CNN-BiLSTM的短期光伏功率预测
1
作者
王泰华
郑文爽
《湖南大学学报(自然科学版)》
北大核心
2025年第10期193-204,共12页
针对光伏发电功率的高波动性导致预测模型精度不足的问题,提出一种新型短期光伏功率预测模型,该模型融合鹭鹰优化算法双分解(secretary bird optimization algorithm double decomposition,STSV)、卷积神经网络(convolutional neural ne...
针对光伏发电功率的高波动性导致预测模型精度不足的问题,提出一种新型短期光伏功率预测模型,该模型融合鹭鹰优化算法双分解(secretary bird optimization algorithm double decomposition,STSV)、卷积神经网络(convolutional neural network,CNN)和双向长短期记忆(bidirectional long short-term memory,BiLSTM)神经网络.利用皮尔逊相关系数法识别影响光伏发电功率的关键气象特征,采用鹭鹰优化算法对时变滤波经验模态分解参数进行优化.基于样本熵的复杂度评估和K-means聚类方法,将分解得到的模态重构为高频、中频和低频项,并对高频项进行变分模态分解以进一步降低波动性.构建CNN-BiLSTM模型以挖掘光伏功率与气象因素之间的内在联系,通过叠加各分量的预测结果来获得短期光伏功率预测.以江苏某光伏电站的实际数据为例进行仿真,结果表明,本模型在均方根误差、平均绝对误差和平均绝对百分比误差方面相较于其他模型分别降低35.6%、32.3%和29.6%,显著提升了预测的准确性.
展开更多
关键词
鹭鹰优化算法
时变滤波经验模态分解
双向长短期记忆神经网络
变分模态分解
在线阅读
下载PDF
职称材料
题名
基于STSV-CNN-BiLSTM的短期光伏功率预测
1
作者
王泰华
郑文爽
机构
河南理工大学电气工程与自动化学院
出处
《湖南大学学报(自然科学版)》
北大核心
2025年第10期193-204,共12页
基金
国家自然科学基金资助项目(51807133)。
文摘
针对光伏发电功率的高波动性导致预测模型精度不足的问题,提出一种新型短期光伏功率预测模型,该模型融合鹭鹰优化算法双分解(secretary bird optimization algorithm double decomposition,STSV)、卷积神经网络(convolutional neural network,CNN)和双向长短期记忆(bidirectional long short-term memory,BiLSTM)神经网络.利用皮尔逊相关系数法识别影响光伏发电功率的关键气象特征,采用鹭鹰优化算法对时变滤波经验模态分解参数进行优化.基于样本熵的复杂度评估和K-means聚类方法,将分解得到的模态重构为高频、中频和低频项,并对高频项进行变分模态分解以进一步降低波动性.构建CNN-BiLSTM模型以挖掘光伏功率与气象因素之间的内在联系,通过叠加各分量的预测结果来获得短期光伏功率预测.以江苏某光伏电站的实际数据为例进行仿真,结果表明,本模型在均方根误差、平均绝对误差和平均绝对百分比误差方面相较于其他模型分别降低35.6%、32.3%和29.6%,显著提升了预测的准确性.
关键词
鹭鹰优化算法
时变滤波经验模态分解
双向长短期记忆神经网络
变分模态分解
Keywords
secretary bird optimization algorithm
time-varying filtering empirical mode decomposition
bidirec⁃tional long short-term memory neural network
variational mode decomposition
分类号
TM615 [电气工程—电力系统及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于STSV-CNN-BiLSTM的短期光伏功率预测
王泰华
郑文爽
《湖南大学学报(自然科学版)》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部