-
题名一种新的鲁棒子空间建模方法
- 1
-
-
作者
余成文
郭雷
张前进
李晖晖
-
机构
西北工业大学自动化学院
-
出处
《计算机科学》
CSCD
北大核心
2007年第8期219-222,共4页
-
基金
国家自然科学基金项目(60175001)资助
-
文摘
针对传统子空间建模技术中存在的两个难点问题,即对训练数据中的噪音或局外点非常敏感和基于批处理方式的大尺度高维样本模型学习计算非常费时,提出了一种新的鲁棒子空间建模方法。该方法先利用基于双平方函数的鲁棒估计,基于梯度下降的学习规则和M-估计器来同时学习和估计线性模型的初始参数,自动分级检测出初始训练样本集中的样本级局外点和样本中的信号级局外点;然后利用鲁棒的增量学习来更新参数,获得可靠的子空间模型。实验证明,这种新的鲁棒子空间建模方法能有效处理不同类型的噪音数据,在学习亮度子空间模型时能有效解决亮度明显变化、遮挡、噪音污染等敏感问题,并且具有较快的学习速度。
-
关键词
子空间建模
增量学习
鲁棒统计m-估计器
局外点
-
Keywords
Subspace learning, Incremental learning, Robust statistic, m-estimation, Outlier
-
分类号
TP391.41
[自动化与计算机技术—计算机应用技术]
-