期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于主成分分析和支持向量机的鲁棒稀疏线性判别分析方法 被引量:3
1
作者 鞠厦轶 吕开云 +1 位作者 龚循强 鲁铁定 《科学技术与工程》 北大核心 2022年第26期11515-11523,共9页
线性判别分析(linear discriminant analysis,LDA)是一种基于监督学习的模式识别方法,在图像识别领域应用广泛。针对经典的LDA识别率不高、识别效率低以及鲁棒性不强的问题,提出了一种基于主成分分析(principal component analysis,PCA... 线性判别分析(linear discriminant analysis,LDA)是一种基于监督学习的模式识别方法,在图像识别领域应用广泛。针对经典的LDA识别率不高、识别效率低以及鲁棒性不强的问题,提出了一种基于主成分分析(principal component analysis,PCA)和支持向量机(support vector machine,SVM)的鲁棒稀疏线性判别分析方法。通过ORL人脸图像库、YaleB人脸图像库、COIL20物体图像库和UCI机器学习库中部分图像集,将本文方法与线性判别分析、鲁棒线性判别分析、基于L1范数和巴氏距离的鲁棒线性判别分析、鲁棒自适应线性判别分析和鲁棒稀疏线性判别分析6种方法进行比较。实验结果表明,在ORL人脸库、COIL20物体库和UCI机器学习库中的部分图像集中,本文方法的识别率和识别效率均高于其他5种方法。在YaleB人脸库加入椒盐噪声的条件下,本文方法的识别率均值为81.35%,说明提出方法的识别率和鲁棒性均优于其他5种方法。 展开更多
关键词 鲁棒稀疏线性判别分析 主成分分析(PCA) 图像识别 监督分类 支持向量机(SVM)
在线阅读 下载PDF
基于拉普拉斯方向的差值线性判别分析 被引量:2
2
作者 李照奎 丁立新 +2 位作者 王岩 何进荣 周凌云 《计算机科学》 CSCD 北大核心 2014年第6期161-165,203,共6页
标准的LDA方法通常有3个问题:1)为了确保类内散度矩阵的非奇异性,必须首先通过PCA进行维数约简,这限制了对更多维数空间的使用;2)当每人只有单个训练样本时,类内散度矩阵必然奇异,此时LDA无法工作;3)缺乏对像素间的局部相关性的考虑。... 标准的LDA方法通常有3个问题:1)为了确保类内散度矩阵的非奇异性,必须首先通过PCA进行维数约简,这限制了对更多维数空间的使用;2)当每人只有单个训练样本时,类内散度矩阵必然奇异,此时LDA无法工作;3)缺乏对像素间的局部相关性的考虑。为了解决这些问题,提出一种基于拉普拉斯方向的差值线性判别分析方法。该方法通过拉普拉斯方向实现更鲁棒的图像相异性测度,通过引入差值散度矩阵来避免类内散度矩阵的奇异性。实验结果显示,该算法对表情变化、光照改变及不同遮挡情况获得了更高的识别率,尤其针对光照变化,效果更加显著。 展开更多
关键词 拉普拉斯方向 维数约简 线性判别分析 的相异性度量
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部