期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv11的露天矿复杂背景下小目标检测
1
作者 朱永军 蔡光琪 +3 位作者 韩进 缪燕子 马小平 焦文华 《工矿自动化》 北大核心 2025年第4期93-99,共7页
露天矿小目标检测任务面临视角广、检测距离远导致目标成像小的挑战,现有目标检测模型存在图像逐层下采样操作引发的特征衰减问题。针对该问题,提出了一种改进YOLOv11模型,并将其用于露天矿复杂背景下小目标检测。改进YOLOv11模型通过... 露天矿小目标检测任务面临视角广、检测距离远导致目标成像小的挑战,现有目标检测模型存在图像逐层下采样操作引发的特征衰减问题。针对该问题,提出了一种改进YOLOv11模型,并将其用于露天矿复杂背景下小目标检测。改进YOLOv11模型通过引入鲁棒特征下采样(RFD)模块替换跨步卷积下采样模块,有效保留了小目标的特征信息;设计了小目标特征增强颈部(STFEN)网络替代原有特征金字塔结构的颈部网络,在模型颈部引入跨阶段部分融合模块,整合来自不同层级的特征图;将原有的CIoU损失函数替换为Powerful-IoU(PIoU)损失函数,解决了训练过程中锚框膨胀问题,使模型快速精准聚焦小目标。在露天矿区小目标数据集上的实验结果表明:(1) RFD模块使模型参数量减少的同时mAP提升了1.5%;STFEN网络虽使模型参数量有所增加,但mAP提升了2.2%;PIoU损失函数在未改变模型参数量及每秒浮点运算次数的前提下使mAP提升了1.7%;三者联合应用最终使模型mAP提升了3.9%。(2)改进YOLO11模型在保持较高推理速度的同时实现了精度提升,其mAP较YOLOv5m,YOLOv8m,YOLOv11m和RtDetr-L分别提高了2.6%,1.5%,0.9%和2.2%,且模型参数量更小,易于边缘部署。 展开更多
关键词 露天矿 小目标检测 YOLOv11 鲁棒特征下采样 小目标特征增强颈部 PIoU损失函数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部