期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于概率和非概率混合模型的结构鲁棒设计方法 被引量:7
1
作者 程远胜 钟玉湘 曾广武 《计算力学学报》 EI CAS CSCD 北大核心 2005年第4期501-505,共5页
讨论了同时存在概率不确定性量和非概率不确定性量时可行鲁棒性和目标函数鲁棒性的实现策略,提出了基于概率和非概率混合模型的结构鲁棒设计方法。基本做法是首先视非概率型不确定性量为参变量,按照传统概率统计的方法计算约束函数和目... 讨论了同时存在概率不确定性量和非概率不确定性量时可行鲁棒性和目标函数鲁棒性的实现策略,提出了基于概率和非概率混合模型的结构鲁棒设计方法。基本做法是首先视非概率型不确定性量为参变量,按照传统概率统计的方法计算约束函数和目标函数的均值和标准方差,然后再考虑非概率型不确定性量的波动变化对约束函数和目标函数统计特征量的影响,以修正常规可行鲁棒性和目标函数鲁棒性的数学模型。所提方法应用于一个10杆桁架结构的最轻质量设计和节点位移鲁棒设计,获得了对不确定性量波动变化不敏感的设计方案。 展开更多
关键词 概率不确定性 非概率不确定性 鲁棒设计 可行鲁棒性 目标函数鲁棒性
在线阅读 下载PDF
基于信息决策的最优保守度配电网恢复策略 被引量:2
2
作者 李芳方 原野 王海燕 《科学技术与工程》 北大核心 2021年第35期15052-15060,共9页
考虑到自然灾害的极端不确定性,提出一种基于信息决策的最优保守度配电网恢复策略。首先将信息缺口决策理论应用于拓扑不确定性,将配电线路发生自然灾害后的停电状态视为一个不确定参数。进一步提出了一个鲁棒性函数,用于确定配电线路... 考虑到自然灾害的极端不确定性,提出一种基于信息决策的最优保守度配电网恢复策略。首先将信息缺口决策理论应用于拓扑不确定性,将配电线路发生自然灾害后的停电状态视为一个不确定参数。进一步提出了一个鲁棒性函数,用于确定配电线路中断的风险规避区域及其总受损长度。然后通过线性优化模型实现最优拓扑重构方法,以确保在遭受破坏性自然灾害后提供预定水平的负荷,并且提出了一种新的保守度选择算法来调整模型的输入。实验结果证明优化的分布式电源资源配置、拓扑重构和线路加固方案能显著提高配电网的可靠性和恢复力。 展开更多
关键词 不确定性 配电网 信息缺口决策理论 鲁棒性函数 恢复力
在线阅读 下载PDF
Reliability-based robust multi-obj ective optimization of a 5-DOF vehicle vibration model subjected to random road profiles 被引量:2
3
作者 Abolfazl Khalkhali Morteza Sarmadi Sina Yousefi 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第1期104-113,共10页
Ride and handling are two paramount factors in design and development of vehicle suspension systems. Conflicting trends in ride and handling characteristics propel engineers toward employing multi-objective optimizati... Ride and handling are two paramount factors in design and development of vehicle suspension systems. Conflicting trends in ride and handling characteristics propel engineers toward employing multi-objective optimization methods capable of providing the best trade-off designs compromising both criteria simultaneously. Although many studies have been performed on multi-objective optimization of vehicle suspension system, only a few of them have used probabilistic approaches considering effects of uncertainties in the design. However, it has been proved that optimum point obtained from deterministic optimization without taking into account the effects of uncertainties may lead to high-risk points instead of optimum ones. In this work, reliability-based robust multi-objective optimization of a 5 degree of freedom (5-DOF) vehicle suspension system is performed using method of non-dominated sorting genetic algorithm-II (NSGA-II) in conjunction with Monte Carlo simulation (MCS) to obtain best designs considering both comfort and handling. Road profile is modeled as a random function using power spectral density (PSD) which is in better accordance with reality. To accommodate the robust approach, the variance of all objective functions is also considered to be minimized. Also, to take into account the reliability criterion, a reliability-based constraint is considered in the optimization. A deterministic optimization has also been performed to compare the results with probabilistic study and some other deterministic studies in the literature. In addition, sensitivity analysis has been performed to reveal the effects of different design variables on objective functions. To introduce the best trade-off points from the obtained Pareto fronts, TOPSIS method has been employed. Results show that optimum design point obtained from probabilistic optimization in this work provides better performance while demonstrating very good reliability and robustness. However, other optimum points from deterministic optimizations violate the regarded constraints in the presence of uncertainties. 展开更多
关键词 probabilistic optimization vehicle suspension deterministic optimization RIDE handling genetic algorithm
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部