以老电影视频为研究对象,针对序列中存在的多种损伤类别,提出一种基于分组鲁棒主成分分析(robust principal component analysis,RPCA)的统一修复方法.采用镜头分割和去闪烁实现对视频序列的预处理.在多分辨率金字塔框架下,采用时空域...以老电影视频为研究对象,针对序列中存在的多种损伤类别,提出一种基于分组鲁棒主成分分析(robust principal component analysis,RPCA)的统一修复方法.采用镜头分割和去闪烁实现对视频序列的预处理.在多分辨率金字塔框架下,采用时空域分组的方式在最粗糙层构造观测矩阵,依次执行基于交替线性法的RPCA变换后,根据帧间误差信息得到大面积破损位置;利用上采样方式构造初步修复结果序列、破损掩模序列以及最近邻偏移矩阵集合,继而对原始序列进行修改,重复时空域分组RPCA变换,实现对老电影视频序列的修复.实验结果证明,该方法能够同时修复画面中的不同损伤,并取得良好的效果.展开更多
针对鲁棒主成分分析(Robust Principal Component Analysis,RPCA)算法中将动态背景误检为运动目标的问题,该文提出一种运动目标检测优化算法。在RPCA算法初步检测出运动目标后,利用动态背景在时间域上满足高斯分布的特性,以及动态背景...针对鲁棒主成分分析(Robust Principal Component Analysis,RPCA)算法中将动态背景误检为运动目标的问题,该文提出一种运动目标检测优化算法。在RPCA算法初步检测出运动目标后,利用动态背景在时间域上满足高斯分布的特性,以及动态背景和运动目标在整个视频流上检出点均值和方差的差异特性,进一步将动态背景和运动目标分离开来。实验结果表明,所提算法能够有效地处理动态背景的问题,并在一定程度上完整检测出运动目标。展开更多
文摘运动目标传统检测方法只考虑图像的亮度或纹理等某一种特性,受特异值影响较大,对噪声比较敏感,鲁棒性也不够好,而且背景恢复精度不高。针对以上局限性,提出一种融合结构相似度(structural similarity,SSIM)全参考模型和鲁棒主成分分析(robust principal component analysis,RPCA)的运动目标检测方法。此方法综合考虑图像的亮度、对比度和结构三种特性,不采用传统的背景减除法,而是把图像像素点的结构相似度作为度量来实现运动对象与背景的分离。实验结果表明,此方法准确率可达0.95,且F度量较传统运动目标检测算法平均提升0.15,总体上比传统方法更具优势。
文摘以老电影视频为研究对象,针对序列中存在的多种损伤类别,提出一种基于分组鲁棒主成分分析(robust principal component analysis,RPCA)的统一修复方法.采用镜头分割和去闪烁实现对视频序列的预处理.在多分辨率金字塔框架下,采用时空域分组的方式在最粗糙层构造观测矩阵,依次执行基于交替线性法的RPCA变换后,根据帧间误差信息得到大面积破损位置;利用上采样方式构造初步修复结果序列、破损掩模序列以及最近邻偏移矩阵集合,继而对原始序列进行修改,重复时空域分组RPCA变换,实现对老电影视频序列的修复.实验结果证明,该方法能够同时修复画面中的不同损伤,并取得良好的效果.
文摘针对鲁棒主成分分析(Robust Principal Component Analysis,RPCA)算法中将动态背景误检为运动目标的问题,该文提出一种运动目标检测优化算法。在RPCA算法初步检测出运动目标后,利用动态背景在时间域上满足高斯分布的特性,以及动态背景和运动目标在整个视频流上检出点均值和方差的差异特性,进一步将动态背景和运动目标分离开来。实验结果表明,所提算法能够有效地处理动态背景的问题,并在一定程度上完整检测出运动目标。