期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
一种增强型改进麻雀搜索算法的三维航迹规划 被引量:5
1
作者 符强 江伟 +1 位作者 纪元法 任风华 《科学技术与工程》 北大核心 2022年第31期13833-13845,共13页
针对无人机在三维复杂环境中多约束的最优化问题,提出了一种增强型改进麻雀搜索(enhanced modified sparrow search algorithm,EMSSA)用于航迹规划问题的求解。首先,利用Logistic-tent混沌序列初始化麻雀搜索算法,增强种群初始位置的随... 针对无人机在三维复杂环境中多约束的最优化问题,提出了一种增强型改进麻雀搜索(enhanced modified sparrow search algorithm,EMSSA)用于航迹规划问题的求解。首先,利用Logistic-tent混沌序列初始化麻雀搜索算法,增强种群初始位置的随机性,提高算法全局搜索能力。其次在发现者-警戒者位置更新中加入了动态自适应调整策略,扩大算法搜索范围,提高算法的收敛速度。然后通过高斯-柯西变异策略,对麻雀个体进行位置更新,增强算法前期的全局搜索能力和后期局部发掘能力。最后选取11种测试函数和Wilcoxon秩和检验验证改进算法的有效性。仿真结果表明,增强型改进麻雀搜索算法在寻优精度、算法稳定性和收敛速度方面要优于其他对比搜索算法,并且可以在复杂的多约束环境中找到一条无碰撞的全局最优路径。在三维航迹规划中EMSSA算法相较于ISSA寻优精度提升了4.11%,相较于SSA提升了9.51%。 展开更多
关键词 麻雀搜索算法 Logistic-tent混沌策略 高斯-柯西变异 自适应调整 无人机航迹规划
在线阅读 下载PDF
基于SSA-CNN-BiLSTM的提升机制动系统故障诊断模型
2
作者 陈竞 张宏伟 王凯旋 《机电工程》 北大核心 2025年第8期1615-1624,共10页
作为连接地面与井下的重要枢纽,矿井提升机的运行对煤矿的生产效率和安全有着直接影响,而制动系统则在提升机运行中发挥着不可或缺的作用。为了充分挖掘监测数据间的故障关系,提出了一种基于麻雀搜索算法(SSA)优化的卷积-双向长短时记... 作为连接地面与井下的重要枢纽,矿井提升机的运行对煤矿的生产效率和安全有着直接影响,而制动系统则在提升机运行中发挥着不可或缺的作用。为了充分挖掘监测数据间的故障关系,提出了一种基于麻雀搜索算法(SSA)优化的卷积-双向长短时记忆神经网络(CNN-BiLSTM)的提升机制动系统故障诊断方法。首先,对矿井提升机制动系统的工作原理和故障原因进行了分析,确定了需要采集的监测数据;其次,搭建了基于SSA-CNN-BiLSTM的神经网络模型,其中CNN能够有效地捕捉数据的局部特征,同时提供关于全局的空间信息;LSTM网络主要用于获取数据在时间序列上的特征,BiLSTM则能够实现数据的双向传递目的,将这两者结合起来,可以在空间和时间两个维度上对数据进行复杂的特征提取和识别,从而提升模型的整体表现;SSA用于优化CNN-BiLSTM网络结构,寻找最优参数;最后,采集了提升机的运行数据,并对搭建的故障诊断模型进行了训练与测试,以某矿井提升机实际运行的数据开展了实验研究,并对SSA优化的CNN-BiLSTM和其他算法进行了性能对比。研究结果表明:SSA优化的CNN-BiLSTM神经网络模型准确率为95.7%,相比于CNN-BiLSTM、BiLSTM和CNN准确率分别提高了6.3%、11.2%和14.1%。该模型具有较高的预测性,可用于提升机制动系统的故障诊断。 展开更多
关键词 起重机械 矿井提升机 制动系统 麻雀搜索算法 卷积-双向长短时记忆神经网络 故障识别与分类
在线阅读 下载PDF
基于VMD-CNN-BiLSTM的轴承故障多级分类识别 被引量:6
3
作者 王祎颜 王衍学 姚家驰 《机电工程》 CAS 北大核心 2024年第9期1554-1564,共11页
双馈风力发电机(DFIG)作为风能发电领域的关键设备之一,保障其稳定运行显得尤为重要。针对DFIG轴承故障的多级分类问题,提出了一种基于参数优化的变分模式分解-卷积神经网络-双向长短期记忆(VMD-CNN-BiLSTM)故障诊断模型。首先,采用改... 双馈风力发电机(DFIG)作为风能发电领域的关键设备之一,保障其稳定运行显得尤为重要。针对DFIG轴承故障的多级分类问题,提出了一种基于参数优化的变分模式分解-卷积神经网络-双向长短期记忆(VMD-CNN-BiLSTM)故障诊断模型。首先,采用改进的麻雀优化算法——鱼鹰-柯西-麻雀搜索算法(OCSSA)对变分模态分解(VMD)的惩罚因子、模态分量进行了优化,OCSSA算法是将鱼鹰算法和柯西变异策略与麻雀算法进行了融合,形成了一种新的优化算法,该算法利用强大的参数搜索能力获取了更精确的频率特征;然后,利用卷积神经网络(CNN)提取了信号的时域和频域特征,并对特征进行了融合;最后,利用双向长短期记忆网络(BiLSTM)学习了故障的序列模式,完成了故障的多级分类任务。研究结果表明:基于OCSSA算法优化的VMD-CNN-BiLSTM模型在多级轴承故障识别方面表现出明显的优势,平均识别准确率可达98.36%,与CNN-LSTM、CNN-BiLSTM和VMD-BiLSTM模型进行对比,该模型具有更卓越的故障诊断性能、出色的泛化能力和快速的计算速度。这一结果充分验证了该模型在双馈风力发电机轴承故障的多级分类识别任务上的有效性,且适用于在线监测和智能诊断,为实现高效、可靠的风能发电提供了重要的实际应用价值。 展开更多
关键词 双馈风力发电机 变分模式分解-卷积神经网络-双向长短期记忆 鱼鹰-柯西-麻雀搜索算法 轴承故障诊断 多级分类 识别准确率 泛化能力
在线阅读 下载PDF
基于MDS和改进SSA-SVM的高速铁路道岔故障诊断方法研究 被引量:7
4
作者 王彦快 米根锁 +2 位作者 孔得盛 杨建刚 张玉 《铁道学报》 EI CAS CSCD 北大核心 2024年第1期81-90,共10页
针对高速铁路道岔设备故障频繁,现场维修工作量大等问题,提出基于多维尺度缩放法(MDS)和改进麻雀搜索算法(SSA)优化支持向量机(SVM)的高速铁路道岔故障诊断模型。首先以ZDJ9道岔转换功率曲线为研究对象,总结现场典型道岔故障类型及故障... 针对高速铁路道岔设备故障频繁,现场维修工作量大等问题,提出基于多维尺度缩放法(MDS)和改进麻雀搜索算法(SSA)优化支持向量机(SVM)的高速铁路道岔故障诊断模型。首先以ZDJ9道岔转换功率曲线为研究对象,总结现场典型道岔故障类型及故障原因,分别提取道岔功率曲线的时域、频域特征指标以及小波包能量熵,组成特征指标向量;其次采用MDS方法进行多维特征指标的降维优化,建立道岔故障特征指标样本数据库;最后利用改进Circle混沌映射初始化种群,并通过自适应t分布增强麻雀种群的多样性,再以改进SSA算法优化SVM模型中的惩罚因子和核函数方差2个关键参数,构建改进SSA-SVM的道岔故障诊断模型。故障诊断结果表明,本模型的故障诊断正确率高达96.25%,诊断效果优于其他方法,可以为道岔设备的故障维修提供理论依据。 展开更多
关键词 高速铁路道岔 故障诊断 改进麻雀搜索算法-支持向量机 Circle混沌映射 自适应t分布 小波包能量熵 多维尺度缩放法
在线阅读 下载PDF
基于多策略融合未来搜索算法的林火图像分割 被引量:3
5
作者 陈光伟 徐梁 +2 位作者 方亮 付雪 陈普宽 《森林工程》 北大核心 2023年第4期134-144,共11页
为解决林火图像传统阈值分割方法时效性差、分割精度低等问题,提出一种基于多策略融合未来搜索算法(IFSA)的多阈值林火图像分割方法。在提升算法的性能方面,采用帐篷映射(Tent映射)初始化种群中的个体,引入自适应权重与认知因子增强种... 为解决林火图像传统阈值分割方法时效性差、分割精度低等问题,提出一种基于多策略融合未来搜索算法(IFSA)的多阈值林火图像分割方法。在提升算法的性能方面,采用帐篷映射(Tent映射)初始化种群中的个体,引入自适应权重与认知因子增强种群内部信息交流,并对最优位置引入柯西分布与高斯分布结合的变异机制提高算法的收敛精度。利用改进算法对森林火灾图像进行分割,并选取最佳适应度、峰值信噪比和结构相似度作为评价指标,与粒子群优化算法、灰狼优化算法等进行对比分析。研究结果表明,改进的未来搜索算法(Improved Future Search Algorithm,IFSA)的适应度曲线收敛效果明显优于其他对比算法,峰值信噪比、结构相似度取得最优的实验次数分别占总实验次数的100%与91.67%,证明基于IFSA的图像分割方法能有效改善林火图像分割效果,为林火特征的提取与分析建立依据。 展开更多
关键词 未来搜索算法 Tent混沌映射 柯西-高斯变异 多阈值图像分割 林火图像
在线阅读 下载PDF
基于改进SSA-DBN的质子交换膜燃料电池水故障智能分类方法 被引量:6
6
作者 刘昕宇 韩莹 +2 位作者 陈维荣 李奇 杨哲昊 《电力自动化设备》 EI CSCD 北大核心 2024年第4期18-24,共7页
为了实现质子交换膜燃料电池(PEMFC)系统水故障的高效快速分类,提出了基于改进麻雀搜索算法(SSA)优化深度置信网络(DBN)的PEMFC故障分类方法。采用归一化处理消除故障数据参数之间量纲不同的影响,使用核主成分分析对数据进行故障特征提... 为了实现质子交换膜燃料电池(PEMFC)系统水故障的高效快速分类,提出了基于改进麻雀搜索算法(SSA)优化深度置信网络(DBN)的PEMFC故障分类方法。采用归一化处理消除故障数据参数之间量纲不同的影响,使用核主成分分析对数据进行故障特征提取,有效地缩减了原始数据维度,降低了运算复杂度,并避免低贡献度数据对故障分类造成干扰。引入柯西-高斯变异策略改进SSA,并利用SSA对DBN进行参数寻优,确定网络结构,通过优化后的DBN实现对PEMFC水故障的快速分类。对3 000组PEMFC水故障数据进行测试,结果表明:所提方法可以快速准确地识别PEMFC的正常状态、膜干故障、水淹故障3种健康状态;总体的分类准确率为98.67%,运算时间为0.89 s,相比支持向量机、概率神经网络方法,所提方法的故障分类精度分别提升了4%、3.34%,运算时间分别减少了15.35、0.35 s。 展开更多
关键词 质子交换膜燃料电池 故障分类 深度置信网络 麻雀搜索算法 核主成分分析 柯西-高斯变异策略
在线阅读 下载PDF
基于网络覆盖率感知的无线传感网络节点部署算法
7
作者 县小平 马国俊 岳振辉 《火力与指挥控制》 北大核心 2025年第4期20-26,共7页
覆盖问题是无线传感网络设计中的首要问题,在保持网络连通的前提下,尽可能优化区域覆盖率是提升网络感知性能的有效方法。提出基于改进麻雀搜索的网络连通保持的节点部署算法。为改进麻雀搜索算法的收敛慢、易陷入局部最优的不足,在产... 覆盖问题是无线传感网络设计中的首要问题,在保持网络连通的前提下,尽可能优化区域覆盖率是提升网络感知性能的有效方法。提出基于改进麻雀搜索的网络连通保持的节点部署算法。为改进麻雀搜索算法的收敛慢、易陷入局部最优的不足,在产生初始种群阶段引入Bernoulli映射,提高种群的多样性。并引入基于高斯-柯西变异机制,使最优个体产生突变。建立保持网络连通的节点部署优化问题,再利用改进麻雀搜索算法求解。性能分析表明,提出的ISNC算法提高了覆盖率,并保持较好的网络连通性。 展开更多
关键词 无线传感网络 节点部署 麻雀搜索算法 高斯-柯西变异 节点度
在线阅读 下载PDF
低碳环境下冷链物流企业库存-配送优化 被引量:17
8
作者 杨玮 杨白月 +2 位作者 王晓雅 马晨佩 吴莹莹 《包装工程》 CAS 北大核心 2021年第11期45-52,共8页
目的优化冷链物流企业库存-配送的路径,以降低企业冷链物流的成本。方法考虑冷链物流企业库存和配送环节产生成本的因素,并结合我国关于碳减排的碳交易政策,将企业的碳排放代价同其他代价综合考虑,建立以总代价最低为目标的成本模型,设... 目的优化冷链物流企业库存-配送的路径,以降低企业冷链物流的成本。方法考虑冷链物流企业库存和配送环节产生成本的因素,并结合我国关于碳减排的碳交易政策,将企业的碳排放代价同其他代价综合考虑,建立以总代价最低为目标的成本模型,设计并改进麻雀搜索算法进行计算。结果通过使用MatlabR2018b进行仿真实验,将采用麻雀搜索算法计算的仓储-配送作业总代价与其他经典算法进行比较,在1个仓储配送任务内,代价可减少2%~4%,验证了麻雀搜索算法解决文中代价模型的有效性。结论该研究为冷链物流企业库存-配送优化问题提供了一种新型的解决方法,具有较强的操作性和实际意义。 展开更多
关键词 冷链物流 库存-配送优化 二氧化碳排放代价 麻雀搜索算法
在线阅读 下载PDF
基于ISSA-VMD的滚动轴承早期故障诊断方法 被引量:8
9
作者 刘玉明 刘自然 王鹏博 《机电工程》 CAS 北大核心 2023年第9期1426-1432,共7页
针对滚动轴承早期信号微弱导致故障特征难以提取和故障诊断准确率不高的问题,提出了一种基于改进麻雀搜索算法-变分模态分解(ISSA-VMD)和样本熵(SE)的滚动轴承早期故障特征提取方法。首先,在轴承早期故障诊断过程中,模态分解个数和惩罚... 针对滚动轴承早期信号微弱导致故障特征难以提取和故障诊断准确率不高的问题,提出了一种基于改进麻雀搜索算法-变分模态分解(ISSA-VMD)和样本熵(SE)的滚动轴承早期故障特征提取方法。首先,在轴承早期故障诊断过程中,模态分解个数和惩罚因子的选择对变分模态分解(VMD)的分解效果有着很大的影响,为消除人为选择参数的影响,将麻雀搜索算法(SSA)优化为改进麻雀搜索算法(ISSA),利用ISSA参数优化后的VMD方法对信号进行了分解;然后,计算了敏感固有模态函数(IMF)分量的样本熵,构成了特征向量;最后,将特征向量作为支持向量机(SVM)的输入,进行了滚动轴承早期故障类型的识别。研究结果表明:ISSA-VMD+样本熵特征提取模型的故障诊断准确率为98.3%,与SSA-VMD+样本熵、灰狼优化算法(GWO)-VMD+样本熵、鲸鱼优化算法(WOA)-VMD+样本熵、传统VMD+样本熵、经验模态分解(EMD)+样本熵等特征提取模型相比,故障诊断准确率分别提高了3.3%、6.6%、5%、3.3%、5%;该模型可以准确地提取故障特征,提高故障诊断准确率。 展开更多
关键词 轴承早期故障 故障特征提取 改进麻雀搜索算法-变分模态分解 样本熵 支持向量机 经验模态分解
在线阅读 下载PDF
基于DESSA-DESN和NCA的锂离子电池剩余寿命预测 被引量:1
10
作者 李练兵 朱乐 +2 位作者 景睿雄 王兰超 韩琪琪 《储能科学与技术》 CAS CSCD 北大核心 2023年第10期3191-3202,共12页
锂离子电池的剩余使用寿命(RUL)对于锂离子电池在设备中的管理、使用至关重要,为了提高RUL的预测精度,本工作提出一种基于混合差分进化-麻雀搜索算法(DESSA)优化的深度回声状态网络(DESN)和邻域成分分析法(NCA)的锂离子电池RUL预测方法... 锂离子电池的剩余使用寿命(RUL)对于锂离子电池在设备中的管理、使用至关重要,为了提高RUL的预测精度,本工作提出一种基于混合差分进化-麻雀搜索算法(DESSA)优化的深度回声状态网络(DESN)和邻域成分分析法(NCA)的锂离子电池RUL预测方法。首先,对锂离子电池的容量衰减特性进行分析,对于多种能够描述电池老化状态的间接健康指标,利用NCA算法降维处理,得到4个高相关度的健康因子作为模型的输入;其次,将差分进化算法(DE)和麻雀搜索算法(SSA)相结合,将突变、交叉、筛选等操作引入SSA算法的种群更新过程中,提出混合差分进化-麻雀搜索算法(DESSA)算法,利用DESSA算法对DESN网络的参数进行寻优,建立DESSA-DESN预测模型。最后,利用NASA数据集和CALCE数据集对所提模型的有效性和泛化性能进行验证,并与SSA-DESN、GPR等现有方法进行比较,结果表明本工作提出的DESSA-DESN模型能够更加准确追踪锂离子电池的退化状态,具有更小的预测误差,对RUL预测结果的均方根误差(RSME)能够保持在1.5%以内,平均绝对误差(MAE)保持在1%以下。 展开更多
关键词 锂离子电池 剩余使用寿命 邻域成分分析 深度回声状态网络 混合差分进化-麻雀搜索算法
在线阅读 下载PDF
多策略改进的蜣螂优化算法 被引量:7
11
作者 匡鑫 阳波 +3 位作者 马华 唐文胜 肖宏峰 陈灵 《计算机工程》 CAS CSCD 北大核心 2024年第10期119-136,共18页
针对蜣螂优化算法(DBO)搜索精度较差、全局搜索能力不足、容易陷入局部最优等问题,提出一种多策略改进的蜣螂优化算法。选用混沌反向学习策略初始化蜣螂种群,使得蜣螂个体在解空间内分布均匀,提升种群多样性;引入带非线性权重的黄金正... 针对蜣螂优化算法(DBO)搜索精度较差、全局搜索能力不足、容易陷入局部最优等问题,提出一种多策略改进的蜣螂优化算法。选用混沌反向学习策略初始化蜣螂种群,使得蜣螂个体在解空间内分布均匀,提升种群多样性;引入带非线性权重的黄金正弦策略改进滚球行为,协调算法的全局搜索与局部挖掘能力;借鉴麻雀搜索算法的加入者位置更新策略改进觅食行为,促使种群向最优位置靠近,提高算法收敛速度与收敛精度;以分段函数形式改进偷窃行为,利于种群在迭代前期对全局充分探索,避免算法过早收敛;采用非线性权重的柯西-高斯变异策略对当前最优位置进行随机扰动,引导算法跳出局部最优位置。将所提算法与5种优化算法在23个基准函数、12个CEC2022测试函数及2个工程优化问题上进行实验对比,结果表明,所提算法至少在21个基准函数、10个CEC2022测试函数及2个工程优化问题上的性能指标优于其他算法,且排名第1,相比于原始蜣螂优化算法,在收敛精度、收敛速度、全局搜索能力以及稳定性上都有较大提升。 展开更多
关键词 蜣螂优化算法 混沌反向学习 黄金正弦 麻雀搜索算法 柯西-高斯变异
在线阅读 下载PDF
基于SSA-BP与SSA的地下水污染源反演识别 被引量:14
12
作者 葛渊博 卢文喜 +1 位作者 白玉堃 潘紫东 《中国环境科学》 EI CAS CSCD 北大核心 2022年第11期5179-5187,共9页
应用基于SSA-BP神经网络替代模型的模拟-优化方法和SSA研究了地下水污染源位置及释放历史的反演识别问题.并在建立地下水水流模型时,应用Cholesky分解方法建立含水层渗透系数连续场,该方法相比于普通的参数分区方法更好地描述了水文地... 应用基于SSA-BP神经网络替代模型的模拟-优化方法和SSA研究了地下水污染源位置及释放历史的反演识别问题.并在建立地下水水流模型时,应用Cholesky分解方法建立含水层渗透系数连续场,该方法相比于普通的参数分区方法更好地描述了水文地质参数的非均质性.结果表明:SSA-BP神经网络替代模型对模拟模型具有较高的逼近精度,其平均相对误差仅有3.21%.应用SSA求解优化模型,能够快速准确地识别出点污染源的位置及释放历史.SSA对污染源位置的反演识别相对误差在10%左右,对污染源源强的反演识别相对误差不超过4%.因此,本文所提出的方法是一种有效的地下水污染源识别方法,可为污染责任认定及污染修复方案的优化提供参考. 展开更多
关键词 污染源反演识别 模拟-优化方法 替代模型 麻雀搜索算法 SSA-BP神经网络替代模型
在线阅读 下载PDF
分布式光伏功率预测的时空特征融合方法研究
13
作者 张晓辉 刘钰婷 +1 位作者 马锴 钟嘉庆 《中国电机工程学报》 北大核心 2025年第S1期231-244,共14页
准确的光伏功率预测对电网调度和电站运行具有重要意义。由于分布式光伏(distributed photovoltaics,DPV)系统受多种时空因素影响,传统基于单一模型的方法难以充分挖掘其时序变化规律与空间相关特性,导致预测精度低、模型适应性弱。该... 准确的光伏功率预测对电网调度和电站运行具有重要意义。由于分布式光伏(distributed photovoltaics,DPV)系统受多种时空因素影响,传统基于单一模型的方法难以充分挖掘其时序变化规律与空间相关特性,导致预测精度低、模型适应性弱。该文提出一种融合时空特征,结合麻雀搜索算法(sparrow search algorithm,SSA)优化极端梯度提升算法(extreme gradient boosting,XGBoost)和差分移动自回归平均(autoregressive integrated moving average,ARIMA)模型的DPV功率预测方法。首先,提出基于斯皮尔曼相关系数筛选与历史光伏功率高度相关的气象因素,并将其输入到SSA优化的XGBoost模型中,以提取和预测时间相关性特征;然后,结合日累计发电量与功率变化率,提出一种基于天气类型的光伏功率数据分类方法,并进一步提出利用斯皮尔曼分析识别与目标站点功率高度相关的参考电站;在此基础上,构建结合动态权重的ARIMA模型,实现对空间相关性特征的建模与预测;最后,提出一种基于信息熵加权的时空特征融合框架模型,根据时间与空间预测模型的误差动态调整其贡献度,生成融合预测结果。以f1电站为研究对象的对比实验结果表明,该文所提出的方法在预测精度与鲁棒性方面均优于传统单一模型,验证了其在DPV功率预测中的实用性和有效性。 展开更多
关键词 分布式光伏 时空特征融合 功率预测 麻雀搜索算法-极端梯度提升算法-差分移动自回归平均模型 信息熵
在线阅读 下载PDF
计及场景互动意愿的定变频空调群优化调控
14
作者 杨婷 朱晓 +3 位作者 陆旦宏 王玉莹 李艳 曾艾东 《电力工程技术》 北大核心 2025年第2期197-208,共12页
负荷聚合商在整合管理空调负荷资源时,应充分考虑定变频空调群体特性与不同场景用户互动意愿对可调潜力的影响。首先,在深入分析定变频空调差异化工作状态的基础上,面向工程应用构建2种空调单体模型与聚合模型。其次,针对不同场景、不... 负荷聚合商在整合管理空调负荷资源时,应充分考虑定变频空调群体特性与不同场景用户互动意愿对可调潜力的影响。首先,在深入分析定变频空调差异化工作状态的基础上,面向工程应用构建2种空调单体模型与聚合模型。其次,针对不同场景、不同日类型以及分时电价下的用户互动意愿开展定量分析,提出考虑互动意愿的空调可调潜力计算模型。然后,基于用户互动意愿度计算得到多场景可调温度区间,将其作为约束条件,构建调控策略优化模型,运用融合鱼鹰和柯西变异的麻雀搜索算法(osprey-Cauchy-sparrow search algorithm,OCSSA)求解得出多场景定变频空调调控指令。最后,算例分析结果表明,所提调控方法能够正确计算得出较高精度的温度调控指令,最终调控结果满足预设削减负荷指令要求。文中所提方法在充分考虑用户互动意愿差异性的前提下,能够自适应且准确地实现多场景定变频空调群调控。 展开更多
关键词 定变频空调 互动意愿 聚合模型 调控模型 融合鱼鹰柯西变异的麻雀搜索算法(OCSSA) 可调潜力计算
在线阅读 下载PDF
基于优化BP神经网络的非稳态精馏过程建模 被引量:2
15
作者 陈锐 贾继宁 姚克俭 《化学工程》 CAS CSCD 北大核心 2023年第10期83-88,共6页
间歇精馏已广泛应用于小批量、高附加值的精细化工和制药行业。然而在非稳态精馏过程中,一些重要的质量参数如产品组成等难以被直接测量,导致常规控制方法效果不佳。为解决这一问题,提出基于BP神经网络的非稳态精馏过程软测量模型,网络... 间歇精馏已广泛应用于小批量、高附加值的精细化工和制药行业。然而在非稳态精馏过程中,一些重要的质量参数如产品组成等难以被直接测量,导致常规控制方法效果不佳。为解决这一问题,提出基于BP神经网络的非稳态精馏过程软测量模型,网络结构为3-12-1,再利用遗传算法、麻雀搜索算法等智能优化算法对网络进行优化,使用优化后的BP神经网络对非稳态精馏过程的产品质量进行预测。结果表明:经麻雀搜索算法优化后,BP神经网络的均方误差为4.32×10^(-5),与标准BP神经网络相比降低约59%,与遗传算法优化后的BP神经网络相比降低约26%。因此采用麻雀搜索算法优化后的BP神经网络建立非稳态精馏过程软测量模型,能够实现更高的预测精度。 展开更多
关键词 BP神经网络 间歇精馏 遗传算法 麻雀搜索算法 乙醇-水体系
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部