期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
High-Precision Fish Pose Estimation Method Based on Improved HRNet
1
作者 PENG Qiujun LI Weiran +1 位作者 LIU Yeqiang LI Zhenbo 《智慧农业(中英文)》 2025年第3期160-172,共13页
[Objective]Fish pose estimation(FPE)provides fish physiological information,facilitating health monitoring in aquaculture.It aids decision-making in areas such as fish behavior recognition.When fish are injured or def... [Objective]Fish pose estimation(FPE)provides fish physiological information,facilitating health monitoring in aquaculture.It aids decision-making in areas such as fish behavior recognition.When fish are injured or deficient,they often display abnormal behaviors and noticeable changes in the positioning of their body parts.Moreover,the unpredictable posture and orientation of fish during swimming,combined with the rapid swimming speed of fish,restrict the current scope of research in FPE.In this research,a FPE model named HPFPE is presented to capture the swimming posture of fish and accurately detect their key points.[Methods]On the one hand,this model incorporated the CBAM module into the HRNet framework.The attention module enhanced accuracy without adding computational complexity,while effectively capturing a broader range of contextual information.On the other hand,the model incorporated dilated convolution to increase the receptive field,allowing it to capture more spatial context.[Results and Discussions]Experiments showed that compared with the baseline method,the average precision(AP)of HPFPE based on different backbones and input sizes on the oplegnathus punctatus datasets had increased by 0.62,1.35,1.76,and 1.28 percent point,respectively,while the average recall(AR)had also increased by 0.85,1.50,1.40,and 1.00,respectively.Additionally,HPFPE outperformed other mainstream methods,including DeepPose,CPM,SCNet,and Lite-HRNet.Furthermore,when compared to other methods using the ornamental fish data,HPFPE achieved the highest AP and AR values of 52.96%,and 59.50%,respectively.[Conclusions]The proposed HPFPE can accurately estimate fish posture and assess their swimming patterns,serving as a valuable reference for applications such as fish behavior recognition. 展开更多
关键词 AQUACULTURE computer vision fish pose estimation key point attention mechanism
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部