期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
基于旗鱼优化算法与扰动观察法复合控制的最大功率点跟踪策略 被引量:1
1
作者 莫仕勋 蒋坤坪 +1 位作者 杨皓 梁振燊 《电源学报》 CSCD 北大核心 2024年第6期110-121,共12页
针对传统的最大功率点跟踪MPPT(maximum power point tracking)方法在部分遮阴条件下陷入局部最优而失效,且常见的智能优化算法往往存在收敛精度差、收敛速度慢、系统稳定性不高等问题,提出1种基于旗鱼优化SFO(sailfish optimization)... 针对传统的最大功率点跟踪MPPT(maximum power point tracking)方法在部分遮阴条件下陷入局部最优而失效,且常见的智能优化算法往往存在收敛精度差、收敛速度慢、系统稳定性不高等问题,提出1种基于旗鱼优化SFO(sailfish optimization)算法与扰动观察P&O(perturbation and observation)法混合控制的光伏系统最大功率跟踪策略。SFO算法同时使用旗鱼(捕食者)和沙丁鱼(猎物)2个种群,可保证粒子在全局空间探索。所提混合算法先利用SFO算法快速跟踪到最大功率点附近,再利用小步长P&O法对最大功率点进行精细搜索,最后利用分段步长的方法同时兼顾MPPT搜索速度和搜索精度的要求。仿真结果表明,所提混合控制策略有效提升了控制系统的响应速度及跟踪精度,提升了系统的稳定性。 展开更多
关键词 最大功率点跟踪 鱼优化算法 扰动观察法 混合控制
在线阅读 下载PDF
改进?鱼优化算法和熵测度的图像多阈值分割 被引量:1
2
作者 刘庆鑫 李霓 +1 位作者 贾鹤鸣 齐琦 《智能系统学报》 CSCD 北大核心 2024年第2期381-391,共11页
针对传统图像多阈值分割方法存在效率低、分割质量差等问题,提出一种改进?鱼优化算法并结合熵测度(weight lens remora optimization algorithm,WLROA)的图像多阈值分割方法。针对?鱼优化算法易陷入局部极值等缺陷,引入透镜成像反向学... 针对传统图像多阈值分割方法存在效率低、分割质量差等问题,提出一种改进?鱼优化算法并结合熵测度(weight lens remora optimization algorithm,WLROA)的图像多阈值分割方法。针对?鱼优化算法易陷入局部极值等缺陷,引入透镜成像反向学习策略,生成透镜反向解来增加种群多样性,进而提高算法跳出局部极值能力;提出一种自适应权重因子,对个体位置进行自适应扰动,提高算法探索能力。以最小化交叉熵作为优化目标,利用WLROA确定最小交叉熵并获得相应分割阈值。选取部分伯克利大学分割数据集图像和遥感图像测试提出算法的分割性能,测试结果表明,WLROA与其他知名算法相比具有更好的分割效果,能够有效实现复杂图像的精确处理。 展开更多
关键词 图像处理 多阈值分割 ?鱼优化算法 最小交叉熵 透镜成像反向学习 自适应权重因子 全局优化 遥感图像
在线阅读 下载PDF
改进多目标鮣鱼优化算法求解多容量养老院选址分配问题 被引量:3
3
作者 朱亚明 张惠珍 +1 位作者 马良 许思创 《计算机应用研究》 CSCD 北大核心 2023年第7期2075-2081,2095,共8页
为应对未来老龄化时代的到来,完善养老服务体系,针对养老院的选址分配问题,在考虑用户满意度和覆盖率的情况下,构建多目标优化模型。首先,考虑老人对养老院的满意度、养老院相对于社区位置满意度以及养老院相对于大型医院位置满意度,构... 为应对未来老龄化时代的到来,完善养老服务体系,针对养老院的选址分配问题,在考虑用户满意度和覆盖率的情况下,构建多目标优化模型。首先,考虑老人对养老院的满意度、养老院相对于社区位置满意度以及养老院相对于大型医院位置满意度,构建了最大化平均满意度和覆盖率以及最小化建设成本的多目标选址分配模型。其次,针对模型的特点,融入两阶段思想,设计了一种改进鮣鱼优化算法对模型进行求解。实验结果表明,该算法能够快速且有效地获得一簇Pareto解,可权衡实际需求和对不同目标的偏好,考虑满意度或成本,在Pareto解中可选择恰当的养老院选址分配方案。最后,通过与其他三种算法的对比分析,验证了模型的可行性和算法的优越性。 展开更多
关键词 选址—分配问题 多容量 满意度 改进多目标鮣鱼优化算法
在线阅读 下载PDF
融合联合反向学习与宿主切换机制的䲟鱼优化算法 被引量:3
4
作者 贾鹤鸣 文昌盛 +3 位作者 吴迪 饶洪华 刘庆鑫 力尚龙 《计算机科学与探索》 CSCD 北大核心 2023年第12期2896-2912,共17页
䲟鱼优化算法(ROA)是2021年提出的元启发式优化算法,其模拟了海洋中䲟鱼寄生依附宿主、经验攻击和宿主觅食的行为。ROA的结构简单且易于实现,但全局性稍显不足,易导致算法收敛速度慢甚至后期难以收敛的现象。针对上述问题,在探索阶段加入... 䲟鱼优化算法(ROA)是2021年提出的元启发式优化算法,其模拟了海洋中䲟鱼寄生依附宿主、经验攻击和宿主觅食的行为。ROA的结构简单且易于实现,但全局性稍显不足,易导致算法收敛速度慢甚至后期难以收敛的现象。针对上述问题,在探索阶段加入宿主切换机制,引入新宿主白鲸,提高原算法的探索能力;同时加入联合反向学习策略,增强了算法跳出局部最优的能力,进一步提高了算法的综合优化性能。通过以上改进,提出了一种融合联合反向学习与宿主切换机制的䲟鱼优化算法(IROA)。为了验证IROA的性能与改进优势,将IROA与原始ROA、6种典型的原始算法以及4种关于ROA的改进算法进行对比。通过CEC2020标准测试函数的实验结果表明,IROA具有更强的寻优能力和更高的收敛精度;最后针对汽车防撞性设计问题的求解,进一步验证了IROA的优势和工程适用性。 展开更多
关键词 鱼优化算法 元启发式优化算法 联合反向学习 宿主切换机制 白鲸优化算法 基准函数测试 工程问题求解
在线阅读 下载PDF
基于混沌宿主切换机制的?鱼优化算法
5
作者 贾鹤鸣 力尚龙 +3 位作者 陈丽珍 刘庆鑫 吴迪 郑荣 《计算机应用》 CSCD 北大核心 2023年第6期1759-1767,共9页
鱼优化算法(ROA)的寻优过程包括依附宿主、经验攻击和宿主觅食3种模式,它的探索能力与开发能力较强;但原始算法通过经验攻击切换宿主,导致探索与开发之间平衡较差、收敛较慢且容易陷入局部最优。针对上述问题,提出了一种基于混沌宿主... 鱼优化算法(ROA)的寻优过程包括依附宿主、经验攻击和宿主觅食3种模式,它的探索能力与开发能力较强;但原始算法通过经验攻击切换宿主,导致探索与开发之间平衡较差、收敛较慢且容易陷入局部最优。针对上述问题,提出了一种基于混沌宿主切换机制的改进鱼优化算法(MROA)。首先,设计一种新的宿主切换机制,以更好地平衡探索和开发的能力;然后,为了使鱼初始宿主多样化,引入Tent混沌映射进行种群初始化,进一步优化算法的性能;最后,将MROA与原始ROA和爬行动物搜索算法(RSA)等6种算法在CEC2020测试函数上进行对比实验。分析实验结果可知,MROA求得的最优适应度值、平均适应度值和适应度值标准差分别比ROA、RSA、鲸鱼优化算法(WOA)、哈里斯鹰优化(HHO)算法、精子群优化(SSO)算法、正余弦算法(SCA)和乌燕鸥优化算法(STOA)平均提高了28%、33%和12%。基于CEC2020的测试结果表明,MROA具有良好的寻优能力、收敛能力和鲁棒性;同时,通过求解焊接梁设计问题和多片式离合器制动器设计问题,进一步验证了MROA在工程问题中的有效性。 展开更多
关键词 鱼优化算法 宿主切换机制 Tent混沌映射 基准函数测试 工程问题求解
在线阅读 下载PDF
基于旗鱼算法优化BP神经网络的水-能源-粮食耦合系统安全特征测度分析
6
作者 刘东 刘海岳 +2 位作者 张祥敏 张亮亮 齐晓晨 《农业工程学报》 北大核心 2025年第11期229-242,共14页
针对区域水-能源-粮食耦合系统安全状况难以精准量化问题,该研究构建一种基于旗鱼优化算法改进的BP神经网络模型(sailfish optimization algorithm-back propagation neural network,SFO-BPNN),并将其应用于哈尔滨市2000—2022年WEF耦... 针对区域水-能源-粮食耦合系统安全状况难以精准量化问题,该研究构建一种基于旗鱼优化算法改进的BP神经网络模型(sailfish optimization algorithm-back propagation neural network,SFO-BPNN),并将其应用于哈尔滨市2000—2022年WEF耦合系统安全特征测度分析中。采用基于主成分分析法-R聚类分析法-皮尔逊相关系数法-变异系数法的优选方法构建WEF耦合系统安全评价指标体系。深入分析耦合系统安全时间演变特征与关键驱动因子。结果表明:哈尔滨市WEF耦合系统安全指数在研究时段内呈现先波动变化,后大幅提升,最后趋于稳定的趋势。降水量、顷均机电井数目、人均粮食产量和农机总动力等为关键驱动因子。构建的SFO-BPNN模型与传统BP神经网络模型和基于遗传算法优化的BP神经网络模型相比,平均绝对误差分别降低16.94%和3.36%、均方误差分别降低26.40%和16.93%、平均绝对百分比误差分别降低22.89%和2.66%、单次运行时间分别降低31.6%和30.5%、决定系数分别升高0.98%和0.15%,说明SFO-BPNN模型无论从精度还是效率方面都更具优势。研究结果可为水-能源-粮食耦合系统安全特征测度分析提供新模型,同时可为有效防控和降低区域安全风险提供参考。 展开更多
关键词 水-能源-粮食耦合系统 安全特征 鱼优化算法 BP神经网络
在线阅读 下载PDF
基于动态自适应旗鱼优化BP神经网络的工作面周期来压预测
7
作者 姚钰鹏 熊武 《工矿自动化》 CSCD 北大核心 2024年第8期30-37,共8页
针对现有工作面周期来压预测方法精度不足、泛化性较差和算力要求高等问题,提出了一种基于动态自适应旗鱼优化BP神经网络(DASFO−BP)的工作面周期来压预测模型。通过分析工作面周期来压机理,得到与来压相关的影响因素,通过皮尔逊相关系... 针对现有工作面周期来压预测方法精度不足、泛化性较差和算力要求高等问题,提出了一种基于动态自适应旗鱼优化BP神经网络(DASFO−BP)的工作面周期来压预测模型。通过分析工作面周期来压机理,得到与来压相关的影响因素,通过皮尔逊相关系数确定对来压具有显著影响的因素(推进速度、直接顶厚度、基本顶厚度、采高、煤层倾角和倾向长度)作为预测模型输入,并以下次来压强度和来压步距作为预测模型输出。针对旗鱼优化(SFO)算法鲁棒性不足的问题,提出了动态自适应优化策略对SFO算法进行改进,即在优化前期利用SFO达到快速收敛的目的,中期则借助秃鹰搜索(BES)跳出局部最优,后期发挥粒子群优化(PSO)深度搜索的优势来提高解的精度。通过改进后的动态自适应旗鱼优化(DASFO)算法对BP神经网络的超参数进行训练,构建了基于DASFO−BP的来压预测模型。实验结果表明:DASFO算法在单峰和多峰测试函数上均能实现快速收敛;与BP,SFO−BP和NCPSO−BP相比,DASFO−BP对周期来压强度和步距的预测值与真实值更为接近,具有更高的精度,拟合能力和泛化能力强,能够准确预测下一周期来压分布情况。 展开更多
关键词 基本顶垮落 工作面周期来压 来压强度 来压步距 鱼优化算法 动态自适应优化 BP神经网络
在线阅读 下载PDF
混凝土坝变形监控模型的随机森林与旗鱼优化组合建模方法 被引量:12
8
作者 易正元 苏怀智 杨立夫 《水电能源科学》 北大核心 2021年第10期106-109,143,共5页
随机森林算法具有实现简单、训练速度快等优点,在大坝变形监控模型领域应用广泛。传统随机森林算法主要采用主观经验或网格遍历进行模型参数标定,然而经验选取参数偶然性大,网格遍历效率过低。为解决此问题,提出一种随机森林与旗鱼优化... 随机森林算法具有实现简单、训练速度快等优点,在大坝变形监控模型领域应用广泛。传统随机森林算法主要采用主观经验或网格遍历进行模型参数标定,然而经验选取参数偶然性大,网格遍历效率过低。为解决此问题,提出一种随机森林与旗鱼优化组合建模的方法(SFO-RF),即利用旗鱼优化算法全局搜索随机森林算法的最优参数,再将最优参数信息传递给随机森林算法进行数据训练。以某混凝土坝变形监测为例,采用SFO-RF建立大坝变形监控模型,选取均方差、均方根误差、相关指数分析其预测效果。与传统取参方式的随机森林模型相比,SFO-RF算法对模型参数的优化有效,提高了模型的预测精度和收敛速度。 展开更多
关键词 混凝土坝 变形预测 建模方法 鱼优化算法
在线阅读 下载PDF
基于AVMHME和WSVD的风电机组主轴承故障诊断
9
作者 孙少华 卢坤鹏 《机械设计与制造》 北大核心 2025年第5期229-235,241,共8页
针对风电机组主轴承噪声干扰较多,故障难以准确诊断的问题,提出一种基于自适应变分多谐波模态提取(AVMHME)和线性峭度加权奇异值分解(WSVD)的故障诊断方法。首先利用Welch功率谱估计方法,得到谱图中主要峰值位置,推测信号的中心频率,其... 针对风电机组主轴承噪声干扰较多,故障难以准确诊断的问题,提出一种基于自适应变分多谐波模态提取(AVMHME)和线性峭度加权奇异值分解(WSVD)的故障诊断方法。首先利用Welch功率谱估计方法,得到谱图中主要峰值位置,推测信号的中心频率,其次利用鳑鮍鱼优化算法对变分多谐波模态提取方法中影响参数进行寻优,使用最优参数下的AVMHME方法对原始信号进行提取得到蕴含丰富故障信息的信号分量。随后通过WSVD方法对所得信号分量进行降噪处理,采用线性峭度表征各子分量故障特征信息,并对含有较多故障特征的降噪信号分量加权重构并对重构信号进行包络分析,从中诊断出微弱的风电机组主轴承故障特征频率成分。仿真信号及现场数据分析结果表明,所研究方法可以有效找出风电机组主轴承的微弱故障特征,实现主轴承故障的准确诊断。 展开更多
关键词 风电机组主轴承 Welch功率谱 变分模态多谐波提取 加权奇异值分解 鳑鮍鱼优化算法
在线阅读 下载PDF
基于水虎鱼觅食优化算法的电动静液作动器位置滑模控制器参数整定
10
作者 李维波 陈俊杰 +2 位作者 张浩 曹帅 邓小青 《液压与气动》 2025年第9期104-115,共12页
作为高阶非线性、强耦合特性的电动静液作动器,其位置滑模控制器参数难以整定,常规的群智能优化算法往往容易陷入局部最优解且计算效率差,但水虎鱼觅食优化算法在整定和优化此类位置滑模控制器的参数方面,却具有增强随机初始化种群分散... 作为高阶非线性、强耦合特性的电动静液作动器,其位置滑模控制器参数难以整定,常规的群智能优化算法往往容易陷入局部最优解且计算效率差,但水虎鱼觅食优化算法在整定和优化此类位置滑模控制器的参数方面,却具有增强随机初始化种群分散程度、避免陷入局部最优陷阱、更好地平衡算法的勘探和开发能力。利用水虎鱼觅食优化算法整定和优化滑模控制器中的滑模面和趋近率参数,包括分析电动静液作动器组成原理、建立其数学模型,并在MATLAB/Simulink和AMESim联合平台上开展仿真验证工作。仿真结果表明,相较于其他群智能优化算法,水虎鱼觅食优化算法优化后的滑模PID控制拥有更小的稳态误差和跟踪误差、具备更优秀的鲁棒性,且计算效率更高,为确保电动静液作动器位置滑模控制器具有更好的控制性能提供了重要的研究思路。 展开更多
关键词 电动静液作动器 滑模PID 水虎觅食优化算法 联合仿真
在线阅读 下载PDF
基于功率损失指数的配电网无功补偿装置两阶段多目标优化配置方法研究 被引量:3
11
作者 郭挺 陈中豪 +1 位作者 徐良德 杨帆 《电气工程学报》 CSCD 2023年第4期239-250,共12页
开展了计及功率损失指数的两阶段无功补偿多目标优化配置方法的研究,以解决目前配网无功优化问题求解时效不佳,且容易陷入局部最优解的问题。以有功损耗、无功补偿装置购买费用、安装费用以及运行费用最小化为综合目标函数,引入罚函数... 开展了计及功率损失指数的两阶段无功补偿多目标优化配置方法的研究,以解决目前配网无功优化问题求解时效不佳,且容易陷入局部最优解的问题。以有功损耗、无功补偿装置购买费用、安装费用以及运行费用最小化为综合目标函数,引入罚函数建立基于功率损失指数的两阶段无功补偿装置配置多目标优化模型,应用鱼优化算法求解带约束条件优化问题,获得无功补偿装置的最佳安装位置和容量,通过在IEEE-34和PG-69系统中的仿真算例验证了所提方法的性能。仿真结果表明,考虑功率损失指数,可进一步有效降低网络损耗、提高节点电压分布水平、降低设备成本费用,同时缩短优化问题求解时间。此外,所采用的鱼优化算法具有更强的全局最优解搜索能力,可以更好地适应配电网负荷水平的变化及分布式电源的接入。 展开更多
关键词 无功补偿 优化配置 功率损失指数 罚函数 鱼优化算法
在线阅读 下载PDF
Research on Short-Term Electric Load Forecasting Using IWOA CNN-BiLSTM-TPA Model
12
作者 MEI Tong-da SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 北大核心 2025年第1期179-187,共9页
Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devi... Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devices have made power load data increasingly complex and volatile.This places higher demands on the prediction and analysis of power loads.In order to improve the prediction accuracy of short-term power load,a CNN-BiLSTMTPA short-term power prediction model based on the Improved Whale Optimization Algorithm(IWOA)with mixed strategies was proposed.Firstly,the model combined the Convolutional Neural Network(CNN)with the Bidirectional Long Short-Term Memory Network(BiLSTM)to fully extract the spatio-temporal characteristics of the load data itself.Then,the Temporal Pattern Attention(TPA)mechanism was introduced into the CNN-BiLSTM model to automatically assign corresponding weights to the hidden states of the BiLSTM.This allowed the model to differentiate the importance of load sequences at different time intervals.At the same time,in order to solve the problem of the difficulties of selecting the parameters of the temporal model,and the poor global search ability of the whale algorithm,which is easy to fall into the local optimization,the whale algorithm(IWOA)was optimized by using the hybrid strategy of Tent chaos mapping and Levy flight strategy,so as to better search the parameters of the model.In this experiment,the real load data of a region in Zhejiang was taken as an example to analyze,and the prediction accuracy(R2)of the proposed method reached 98.83%.Compared with the prediction models such as BP,WOA-CNN-BiLSTM,SSA-CNN-BiLSTM,CNN-BiGRU-Attention,etc.,the experimental results showed that the model proposed in this study has a higher prediction accuracy. 展开更多
关键词 Whale Optimization Algorithm Convolutional Neural Network Long Short-Term Memory Temporal Pattern Attention Power load forecasting
在线阅读 下载PDF
基于PROA-BP的激光3D投影振镜偏转电压预测模型 被引量:2
13
作者 林雪竹 王海 +4 位作者 郭丽丽 闫东明 李丽娟 刘悦 孙静 《光子学报》 EI CAS CSCD 北大核心 2024年第3期49-61,共13页
为减小激光3D投影系统振镜偏转角偏差与根据振镜偏转角标定的转轴公垂线长度e误差引起的投影系统综合非线性误差,实现激光3D投影系统高精度辅助装配,提出一种基于改进的?鱼优化算法-BP神经网络的激光3D投影振镜偏转电压预测模型,以激光... 为减小激光3D投影系统振镜偏转角偏差与根据振镜偏转角标定的转轴公垂线长度e误差引起的投影系统综合非线性误差,实现激光3D投影系统高精度辅助装配,提出一种基于改进的?鱼优化算法-BP神经网络的激光3D投影振镜偏转电压预测模型,以激光出射方向单位矢量作为输入预测振镜偏转电压数值。将改进的?鱼算法与BP神经网络相结合,解决BP神经网络容易陷入局部最优解问题,并通过BP神经网络实现激光3D投影系统综合非线性误差的耦合与补偿。结果表明,改进的?鱼算法-BP神经网络训练10 000次后均方差误差和平均绝对误差均值分别是粒子群算法-BP神经网络的41.2%、62.4%,是BP神经网络的22.2%、50.7%。基于改进的?鱼算法-BP激光3D投影振镜偏转电压模型的投影定位精度为0.35 mm,与激光3D投影传统模型相比,投影定位精度提升了30%,可实现更高精度投影定位。 展开更多
关键词 激光3D投影系统 非线性误差 ?鱼优化算法 BP神经网络 投影定位精度
在线阅读 下载PDF
冲击噪声下基于演化长短时记忆神经网络的调制信号识别 被引量:4
14
作者 高洪元 王世豪 +2 位作者 程建华 郭瑞晨 张志伟 《智能系统学报》 CSCD 北大核心 2023年第4期676-687,共12页
为了解决冲击噪声下长短时记忆(long short term memory,LSTM)神经网络调制信号识别方法抗冲击噪声能力弱和超参数难以确定的问题,本文提出了一种演化长短时记忆神经网络的调制识别方法。利用基于短时傅里叶变换的卷积神经网络(convolut... 为了解决冲击噪声下长短时记忆(long short term memory,LSTM)神经网络调制信号识别方法抗冲击噪声能力弱和超参数难以确定的问题,本文提出了一种演化长短时记忆神经网络的调制识别方法。利用基于短时傅里叶变换的卷积神经网络(convolution neural network,CNN)去噪模型对数据集去噪;结合量子计算机制和旗鱼优化器(sailfish optimizer,SFO)设计了量子旗鱼算法(quantum sailfish algorithm,QSFA)去演化LSTM神经网络以获得最优的超参数;使用演化长短时记忆神经网络作为分类器进行自动调制信号识别。仿真结果表明,采用所设计的CNN去噪和演化长短时记忆神经网络模型,识别准确率有了大幅度的提高。量子旗鱼算法演化LSTM神经网络模型降低了传统LSTM神经网络容易陷于局部极小值或者过拟合的概率,当混合信噪比为0 dB,所提方法对11种调制信号的平均识别准确率达到90%以上。 展开更多
关键词 调制信号识别 冲击噪声 卷积神经网络 量子旗鱼优化算法 长短时记忆神经网络 稳定分布 超参数 短时傅里叶变换
在线阅读 下载PDF
基于改进AAKR的风电机组齿轮箱状态监测 被引量:6
15
作者 田雯雯 吕丽霞 +1 位作者 冯雪凯 王梓齐 《电子测量技术》 北大核心 2022年第15期158-165,共8页
针对自联想核回归(AAKR)算法在计算相似度时未考虑状态向量中各元素对欧氏距离贡献程度不一、模型参数常依据主观经验进行标定而导致模型精度较低的问题,提出基于旗鱼优化(SFO)的改进AAKR算法建立齿轮箱正常行为模型的非参数建模方法。... 针对自联想核回归(AAKR)算法在计算相似度时未考虑状态向量中各元素对欧氏距离贡献程度不一、模型参数常依据主观经验进行标定而导致模型精度较低的问题,提出基于旗鱼优化(SFO)的改进AAKR算法建立齿轮箱正常行为模型的非参数建模方法。首先,以全参数等间隔划分方法构建记忆矩阵;其次,在AAKR模型中引入距离权重系数并通过SFO算法对AAKR模型中的宽度系数和距离权重系数进行优化;最后基于滑动窗口和残差数据构造健康指数实现风电机组齿轮箱的状态监测。以某台2 MW风电机组实测数据为例进行验证,结果表明,相比于传统AAKR、加权AAKR和稳健状态估计模型,所提算法平均精度分别提高了1.55%、0.6%、0.76%,在故障预警时通过所构造的健康指数能够更灵敏、准确的反映齿轮箱的早期故障及其发展趋势。 展开更多
关键词 鱼优化算法 自联想核回归算法 加权欧氏距离 齿轮箱状态监测
在线阅读 下载PDF
基于小波包变换的ROA-ELM大坝变形多步预测模型 被引量:9
16
作者 陈金红 崔东文 《三峡大学学报(自然科学版)》 CAS 2022年第6期21-27,共7页
为提高大坝变形时间序列多步预测精度,引入小波包变换(WPT)、鮣鱼优化算法(ROA)和极限学习机(ELM),提出WPT-ROA-ELM大坝变形时间序列多步预测模型,并应用于岳城水库大坝变形多步预测.首先,介绍ROA原理,在不同维度条件下选取6个典型函数... 为提高大坝变形时间序列多步预测精度,引入小波包变换(WPT)、鮣鱼优化算法(ROA)和极限学习机(ELM),提出WPT-ROA-ELM大坝变形时间序列多步预测模型,并应用于岳城水库大坝变形多步预测.首先,介绍ROA原理,在不同维度条件下选取6个典型函数对ROA进行仿真验证;其次,利用2层WPT将大坝变形时序数据分解为4个子序列分量,达到降低大坝变形时序数据复杂性和不平稳性的目的;最后利用ROA优化ELM输入层权值和隐含层偏值,建立WPT-ROA-ELM模型对各子序列分量进行多步预测,将预测结果加和重构得到最终大坝变形多步预测结果,同时构建WPT-ROA-SVM、WPT-ROA-BP作对比分析模型.结果表明:ROA具有较好的寻优精度和全局搜索能力;WPT-ROA-ELM模型对实例大坝变形超前1步~超前5步预测的平均绝对百分比误差在0.12%~3.10%之间,小于WPT-ROA-SVM模型的1.98%~6.13%和WPT-ROA-BP模型的0.87%~7.41%,尤以超前1步~超前3步的预测效果最好,其平均绝对百分比误差均≤0.58%;WPT-ROA-ELM模型能充分发挥WPT、ROA和ELM优势,表现出较好的预测精度和稳定性能,预测误差随着预测超前步数的增加而增大. 展开更多
关键词 变形预测 小波包变换 鱼优化算法 极限学习机 多步预测 仿真测试
在线阅读 下载PDF
Optimal variable structure control with sliding modes for unstable processes 被引量:4
17
作者 KUMAR Satyendra AJMERI Moina 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第10期3147-3158,共12页
In this work,a variable structure control(VSC)technique is proposed to achieve satisfactory robustness for unstable processes.Optimal values of unknown parameters of VSC are obtained using Whale optimization algorithm... In this work,a variable structure control(VSC)technique is proposed to achieve satisfactory robustness for unstable processes.Optimal values of unknown parameters of VSC are obtained using Whale optimization algorithm which was recently reported in literature.Stability analysis has been done to verify the suitability of the proposed structure for industrial processes.The proposed control strategy is applied to three different types of unstable processes including non-minimum phase and nonlinear systems.A comparative study ensures that the proposed scheme gives superior performance over the recently reported VSC system.Furthermore,the proposed method gives satisfactory results for a cart inverted pendulum system in the presence of external disturbance and noise. 展开更多
关键词 variable structure control sliding mode control Whale optimization algorithm ROBUSTNESS non-linear system
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部