期刊文献+
共找到68篇文章
< 1 2 4 >
每页显示 20 50 100
一种高阶无迹卡尔曼滤波方法 被引量:50
1
作者 张勇刚 黄玉龙 +1 位作者 武哲民 李宁 《自动化学报》 EI CSCD 北大核心 2014年第5期838-848,共11页
现有的研究中,高阶无迹变换(Unscented transform,UT)还不存在具体的解析解,因此,无法利用高阶无迹变换获得具备更高精度的高阶无迹卡尔曼滤波器(Unscented Kalman filter,UKF).为了解决这一问题,本文在五阶容积变换(Cubature transform... 现有的研究中,高阶无迹变换(Unscented transform,UT)还不存在具体的解析解,因此,无法利用高阶无迹变换获得具备更高精度的高阶无迹卡尔曼滤波器(Unscented Kalman filter,UKF).为了解决这一问题,本文在五阶容积变换(Cubature transform,CT)的基础上,通过引入一个自由参数κ,得到高阶无迹变换的解析解,从而获得了高阶无迹卡尔曼滤波器(Unscented Kalman filter,UKF).同时验证了现有的五阶容积变换和五阶无迹变换分别是本文所提出的高阶无迹变换在κ=2和κ=6-n时的两个特例.进而分析和讨论了高阶无迹卡尔曼滤波器在系统不同维数条件下κ值的最优选取,并讨论了其稳定性.纯方位跟踪模型和弹道目标再入模型仿真验证了本文方法的正确性,且与现有方法相比具有更高的精度. 展开更多
关键词 高阶无变换 五阶容积变换 五阶无迹变换 高阶无迹卡尔曼滤波器
在线阅读 下载PDF
基于无迹卡尔曼滤波和小波分析的IMU传感器去噪技术研究 被引量:4
2
作者 阳兆哲 李跃忠 吴光文 《现代电子技术》 北大核心 2024年第5期53-59,共7页
获得精确的姿态信息是跌倒检测的关键。文中在姿态角解算问题中提出一种基于无迹卡尔曼滤波和小波滤波的改进方法,通过Savitzky-Golay滤波器和小波滤波融合算法对加速度计以及陀螺仪数据进行降噪处理,利用降噪后的加速度数据对陀螺仪数... 获得精确的姿态信息是跌倒检测的关键。文中在姿态角解算问题中提出一种基于无迹卡尔曼滤波和小波滤波的改进方法,通过Savitzky-Golay滤波器和小波滤波融合算法对加速度计以及陀螺仪数据进行降噪处理,利用降噪后的加速度数据对陀螺仪数据进行PI积分补偿,将补偿后的陀螺仪数据进行Mahony解算,其结果作为无迹卡尔曼滤波的状态信息;其次通过加速度值解算,将其结果作为无迹卡尔曼滤波的量测信息实现姿态解算。实验表明,在静态条件下,相对于常见的扩展卡尔曼滤波融合切比雪夫滤波算法,该方法使IMU传感器原始加速度计精度提高了83.3%,姿态角标准差平均减少了0.00193,能够有效地减少随机噪声。零点漂移、高斯噪声对IMU传感器姿态角信号的影响,使跌倒检测系统在复杂的环境条件下具有较高的精度以及稳定性。 展开更多
关键词 跌倒检测 小波滤波 Savitzky-Golay滤波器 无迹卡尔曼滤波 IMU传感器 姿态角
在线阅读 下载PDF
一种基于动态残差的自适应鲁棒无迹卡尔曼滤波器定位算法 被引量:10
3
作者 许万 程兆 +1 位作者 夏瑞东 陈汉成 《中国机械工程》 EI CAS CSCD 北大核心 2023年第21期2607-2614,共8页
针对标准无迹卡尔曼滤波(UKF)定位算法无法满足移动机器人在不平整地面运动时高精度定位要求的问题,结合抗差估计理论,提出了一种自适应鲁棒无迹卡尔曼滤波器(ARUKF)定位算法。ARUKF根据动态残差对UKF的预测值进行抗差自适应调整,减小... 针对标准无迹卡尔曼滤波(UKF)定位算法无法满足移动机器人在不平整地面运动时高精度定位要求的问题,结合抗差估计理论,提出了一种自适应鲁棒无迹卡尔曼滤波器(ARUKF)定位算法。ARUKF根据动态残差对UKF的预测值进行抗差自适应调整,减小了外部干扰对系统预测值的影响,提高了系统的精度与鲁棒性,通过减少采样过程的运算量加快了运算,并提高了系统实时性。仿真和现场测试结果表明,相较于UKF算法和基于Sage-Husa的改进UKF算法,ARUKF算法对不平整地面产生的扰动能更快收敛,具有更加优异的精度、鲁棒性和实时性,平均距离误差小于2 mm,平均角度误差小于0.016 rad,可以满足更苛刻的建筑施工现场放线要求。 展开更多
关键词 精准定位 抗差估计 动态残差 自适应鲁棒无迹卡尔曼滤波器 移动机器人
在线阅读 下载PDF
基于高阶神经网络扩展卡尔曼滤波器算法的非线性动态系统辨识 被引量:1
4
作者 刘春梅 沈毅 +1 位作者 胡恒章 葛升民 《哈尔滨工业大学学报》 CSCD 北大核心 2000年第2期107-110,113,共5页
针对非线性动态系统辨识 ,采用高阶神经网络和径向基函数网络相结合的方法 ,神经网络的连接权值可作为系统的未知参数 ,用扩展卡尔曼滤波器 (EKF)算法来估计 ,确保了该方法的快速收敛 .具体模型的仿真结果表明该方法能快速收敛 ,并能方... 针对非线性动态系统辨识 ,采用高阶神经网络和径向基函数网络相结合的方法 ,神经网络的连接权值可作为系统的未知参数 ,用扩展卡尔曼滤波器 (EKF)算法来估计 ,确保了该方法的快速收敛 .具体模型的仿真结果表明该方法能快速收敛 ,并能方便的用于在线辨识 . 展开更多
关键词 高阶神经网络 卡尔曼滤波器 动态系统辨识
在线阅读 下载PDF
高阶无迹卡尔曼滤波算法在飞机定位中的应用 被引量:3
5
作者 刘家学 林松岩 《计算机应用与软件》 CSCD 2016年第5期256-259,264,共5页
无迹卡尔曼滤波算法(UKF)在飞机定位和跟踪的过程中精度不够,原因在于误差变量的偏度和峰态在坐标转换过程中对其分布影响很大。为了解决这一问题,将高阶无迹卡尔曼滤波算法应用到QAR数据中。首先,根据高阶UT变换,选取一组样本点(sigma... 无迹卡尔曼滤波算法(UKF)在飞机定位和跟踪的过程中精度不够,原因在于误差变量的偏度和峰态在坐标转换过程中对其分布影响很大。为了解决这一问题,将高阶无迹卡尔曼滤波算法应用到QAR数据中。首先,根据高阶UT变换,选取一组样本点(sigma点)表征k时刻最优估计值前四阶矩的分布特征,通过传递得到k+1时刻一步预测值的先验概率分布。然后以观测数据作为量测值,带入滤波算法得到k+1时刻飞机状态的最优估计值。最后根据计算机产生的模拟噪声数据和真实的QAR数据实现飞机定位的仿真验证。从仿真结果看,高阶无迹卡尔曼滤波算法比无迹卡尔曼滤波精度更高,误差更小,对QAR数据中其他类型的数据形式有一定的借鉴意义。 展开更多
关键词 QAR数据 高阶UT变换 高阶无卡尔曼滤波
在线阅读 下载PDF
变循环发动机自适应无迹卡尔曼滤波器设计 被引量:5
6
作者 肖红亮 彭凯 +3 位作者 王占胜 符江锋 陈昊 闫波 《推进技术》 EI CAS CSCD 北大核心 2023年第5期307-314,共8页
针对变循环发动机健康参数估计问题,设计了一种自适应无迹卡尔曼滤波器。该算法通过最大化后验密度函数来建立过程噪声协方差和测量噪声协方差的自适应更新方程,以改善传统无迹卡尔曼滤波器设计中先验参数需要根据经验来设置,进而导致... 针对变循环发动机健康参数估计问题,设计了一种自适应无迹卡尔曼滤波器。该算法通过最大化后验密度函数来建立过程噪声协方差和测量噪声协方差的自适应更新方程,以改善传统无迹卡尔曼滤波器设计中先验参数需要根据经验来设置,进而导致滤波器性能受人为因素影响较大的问题。以带核心机驱动风扇级的变循环发动机为对象,进行了不可测参数估计仿真试验,对所设计的自适应无迹卡尔曼滤波器算法进行了仿真对比验证。结果表明:在单参数退化条件下,健康参数平均估计误差不大于2%;多参数退化条件下,健康参数平均估计误差不大于1.8%;该算法性能优于增广卡尔曼滤波器、传统无迹卡尔曼滤波器,相较于传统无迹卡尔曼滤波器性能提升9.5%。 展开更多
关键词 变循环发动机 参数估计 卡尔曼滤波器 自适应无迹卡尔曼滤波器 概率密度函数
在线阅读 下载PDF
自适应平方根无迹卡尔曼滤波算法 被引量:17
7
作者 李鹏 宋申民 陈兴林 《控制理论与应用》 EI CAS CSCD 北大核心 2010年第2期143-146,共4页
将高斯过程回归融入平方根无迹卡尔曼滤波(SRUKF)算法,本文提出了一种不确定系统模型协方差自适应调节滤波算法.该算法分为学习和估计两部分:学习阶段用高斯过程对训练数据进行学习,得到系统回归模型及噪声协方差;估计阶段由回归模型代... 将高斯过程回归融入平方根无迹卡尔曼滤波(SRUKF)算法,本文提出了一种不确定系统模型协方差自适应调节滤波算法.该算法分为学习和估计两部分:学习阶段用高斯过程对训练数据进行学习,得到系统回归模型及噪声协方差;估计阶段由回归模型代替状态方程和观测方程,相应的噪声协方差实时自适应调整.该方法克服了传统方法容易受系统动态模型不确定性和噪声协方差不准确限制的问题,仿真结果验证了算法的有效性. 展开更多
关键词 高斯过程回归 平方根无迹卡尔曼滤波器 自适应
在线阅读 下载PDF
基于无迹卡尔曼滤波的iBeacon/INS数据融合定位算法 被引量:12
8
作者 王守华 陆明炽 +2 位作者 孙希延 纪元法 胡丁梅 《电子与信息学报》 EI CSCD 北大核心 2019年第9期2209-2216,共8页
针对微机电惯性导航系统(MEMS-INS)定位解算存在积累误差及低功耗蓝牙技术iBeacon指纹定位存在跳变误差等问题,该文提出一种基于无迹卡尔曼滤波器(UKF)的iBeacon/MEMS-INS数据融合定位算法。该算法对iBeacon锚点与定位目标的距离进行解... 针对微机电惯性导航系统(MEMS-INS)定位解算存在积累误差及低功耗蓝牙技术iBeacon指纹定位存在跳变误差等问题,该文提出一种基于无迹卡尔曼滤波器(UKF)的iBeacon/MEMS-INS数据融合定位算法。该算法对iBeacon锚点与定位目标的距离进行解算,利用加速度计和陀螺仪的数据实现姿态阵和位置解算。将蓝牙锚点位置向量、载体速度误差信息等组成状态量,将惯性导航定位信息和蓝牙定位距离信息等组成观测量,设计无迹卡尔曼滤波器,实现iBeacon/MEMS-INS数据融合定位。实验测试结果表明,该算法有效解决MEMS-INS存在较大积累误差及iBeacon指纹定位存在跳变误差的问题,可以实现1.5 m内的定位精度。 展开更多
关键词 惯性传感器 蓝牙信标 无迹卡尔曼滤波器 信息融合 行人定位
在线阅读 下载PDF
基于自适应无迹卡尔曼滤波算法的锂离子动力电池状态估计 被引量:82
9
作者 魏克新 陈峭岩 《中国电机工程学报》 EI CSCD 北大核心 2014年第3期445-452,共8页
应用传统的无迹卡尔曼滤波(unscented Kalman filter,UKF)算法估计电动汽车锂离子动力电池核电状态(state of charge,SOC)时,常会出现由于电池模型参数不准确而造成估计误差增大的问题,该文采用了自适应无迹卡尔曼滤波(adaptive unscent... 应用传统的无迹卡尔曼滤波(unscented Kalman filter,UKF)算法估计电动汽车锂离子动力电池核电状态(state of charge,SOC)时,常会出现由于电池模型参数不准确而造成估计误差增大的问题,该文采用了自适应无迹卡尔曼滤波(adaptive unscented Kalman filter,AUKF)算法解决该问题。AUKF算法是一种循环迭代算法,可以实时估计电池模型中的欧姆内阻,提高电池模型准确性,从而提高电池SOC估计精度。另外,电池的欧姆内阻可以表征电池的健康状态(state of health,SOH),因此还可以根据电池的欧姆内阻估计出电池的SOH。在设定工况下对电池做充放电实验,实验分析表明,与UKF相比,AUKF提高了电池SOC估计的精度,并能准确的估计出电池的欧姆内阻。 展开更多
关键词 荷电状态 健康状态 自适应无迹卡尔曼滤波器 电动汽车 锂离子动力电池
在线阅读 下载PDF
加权观测融合非线性无迹卡尔曼滤波算法 被引量:19
10
作者 郝钢 叶秀芬 陈亭 《控制理论与应用》 EI CAS CSCD 北大核心 2011年第6期753-758,共6页
针对非线性系统的无迹卡尔曼滤波器(UKF),应用加权最小二乘(WLS)法,提出了加权观测融合UKF滤波算法.证明了加权观测融合UKF滤波算法与集中式观测融合UKF滤波算法在数值上的完全等价性,因而具有全局最优性.一个带两传感器非线性系统的仿... 针对非线性系统的无迹卡尔曼滤波器(UKF),应用加权最小二乘(WLS)法,提出了加权观测融合UKF滤波算法.证明了加权观测融合UKF滤波算法与集中式观测融合UKF滤波算法在数值上的完全等价性,因而具有全局最优性.一个带两传感器非线性系统的仿真例子说明了两种融合算法的有效性及等价性. 展开更多
关键词 非线性滤波 无迹卡尔曼滤波器 加权观测融合
在线阅读 下载PDF
动态电压恢复器的无迹卡尔曼滤波检测方法 被引量:3
11
作者 李功新 周文俊 +1 位作者 薛尚青 江修波 《电力系统保护与控制》 EI CSCD 北大核心 2013年第16期127-132,共6页
针对三相三线制系统中动态电压恢复器的信号提取问题,提出了无迹卡尔曼滤波结合数学形态滤波的电压暂降检测方法。在αβ坐标系下建立含电压稳态量和补偿量的基波分量非线性状态空间模型,通过无迹卡尔曼滤波构建状态空间方程,对电压输... 针对三相三线制系统中动态电压恢复器的信号提取问题,提出了无迹卡尔曼滤波结合数学形态滤波的电压暂降检测方法。在αβ坐标系下建立含电压稳态量和补偿量的基波分量非线性状态空间模型,通过无迹卡尔曼滤波构建状态空间方程,对电压输入信号采用数学形态滤波进行消噪预处理。所提方法实现了对电压稳态量的估计、补偿量的提取及暂降电压正序、负序分量幅值和相位的解耦检测,在动态响应速度及检测可靠性方面具有优越性。仿真结果验证了所提检测方法的正确性和有效性。 展开更多
关键词 动态电压恢复器 电压暂降 无迹卡尔曼滤波 数学形态滤波器 稳态量 补偿量
在线阅读 下载PDF
基于改进自适应无迹卡尔曼滤波的国产民机导航数据滤波算法 被引量:5
12
作者 杨军利 王立新 +1 位作者 钱宇 刘瑜 《科学技术与工程》 北大核心 2021年第35期15123-15129,共7页
针对国产民用飞机导航数据存在杂波不能准确测量的问题,提出一种基于改进自适应无迹卡尔曼滤波(adaptive unscented Kalman filter,AUKF)算法的导航数据滤波方法。将无迹卡尔曼滤波(unscented Kalman filter,UKF)与改进Sage-Husa次优无... 针对国产民用飞机导航数据存在杂波不能准确测量的问题,提出一种基于改进自适应无迹卡尔曼滤波(adaptive unscented Kalman filter,AUKF)算法的导航数据滤波方法。将无迹卡尔曼滤波(unscented Kalman filter,UKF)与改进Sage-Husa次优无偏极大后验噪声估计器结合构造出改进AUKF,有效解决了在模型不确定或干扰信号统计特性不完全得知的情况下,滤波精度低甚至发散的问题,同时与维纳滤波器和小波阈值法滤波效果进行对比。选择ARJ21飞机实际运行的高度、经度及纬度数据进行仿真。结果表明:改进后的AUKF算法较其他滤波算法精度更高,有效提高了导航数据的可靠性。研究对提高国产民机导航定位精度具有重要意义。 展开更多
关键词 自适应无迹卡尔曼滤波 Sage-Husa算法 维纳滤波器 小波阈值法 国产民用飞机
在线阅读 下载PDF
基于平方根无迹卡尔曼滤波的混沌信号盲分离
13
作者 陈越 李硕明 江武志 《探测与控制学报》 CSCD 北大核心 2015年第2期66-71,共6页
针对现有卡尔曼盲分离算法在分离混沌信号时性能较差的问题,提出了基于平方根无迹卡尔曼滤波器(SRUKF)的混沌信号盲分离方法。该方法采用递推方式实现,在每一次递推中,首先将分离向量作为状态变量进行卡尔曼估计,然后将分离向量视为已知... 针对现有卡尔曼盲分离算法在分离混沌信号时性能较差的问题,提出了基于平方根无迹卡尔曼滤波器(SRUKF)的混沌信号盲分离方法。该方法采用递推方式实现,在每一次递推中,首先将分离向量作为状态变量进行卡尔曼估计,然后将分离向量视为已知量,再次利用SRUKF重建源信号,从而得到源信号在最小均方误差意义下的优化估计。实验仿真表明,所提算法能够快速收敛,并且在噪声环境下估计误差比现有的卡尔曼盲分离方法明显减小。 展开更多
关键词 盲分离 混沌信号 平方根无迹卡尔曼滤波器
在线阅读 下载PDF
基于改进自适应无迹卡尔曼滤波的锂电池SOC估计 被引量:17
14
作者 张周灿 谢长君 +2 位作者 曹夏令 费亚龙 李小龙 《汽车技术》 CSCD 北大核心 2018年第3期10-15,共6页
针对传统无迹卡尔曼滤波算法在估计电池荷电状态中存在收敛速度较慢、容易发散等问题,提出了一种改进的自适应无迹卡尔曼滤波算法,该算法在传统无迹卡尔曼滤波算法基础上引入了衰减因子和自适应调节因子,提高估计精度和收敛速度。以二... 针对传统无迹卡尔曼滤波算法在估计电池荷电状态中存在收敛速度较慢、容易发散等问题,提出了一种改进的自适应无迹卡尔曼滤波算法,该算法在传统无迹卡尔曼滤波算法基础上引入了衰减因子和自适应调节因子,提高估计精度和收敛速度。以二阶RC模型为基础,运用最小二乘法对模型参数进行辨识,采用基于UT变换的自适应无迹卡尔曼滤波器算法实现对锂电池SOC的估计。搭建锂电池充放电试验平台,测试试验结果表明,该算法对锂电池SOC估计精度小于1%,在估计精度及收敛速度上均优于传统无迹卡尔曼滤波算法。 展开更多
关键词 自适应无迹卡尔曼滤波器 荷电状态 最小二乘法 自适应调节因子 估计精度
在线阅读 下载PDF
基于无迹卡尔曼滤波的船舶运动数学模型辨识 被引量:10
15
作者 秦操 《舰船科学技术》 北大核心 2021年第1期89-94,共6页
针对一艘目标三体船,构建MMG运动数学模型结构,利用无迹卡尔曼滤波器结合自航试验数据对模型中的参数进行辨识。为减轻动力相消带来的影响,结合三体船特点对模型结构进行化简,并设计不同的控制方式进行分步辨识。通过模型预报数据与自... 针对一艘目标三体船,构建MMG运动数学模型结构,利用无迹卡尔曼滤波器结合自航试验数据对模型中的参数进行辨识。为减轻动力相消带来的影响,结合三体船特点对模型结构进行化简,并设计不同的控制方式进行分步辨识。通过模型预报数据与自航试验观测值的对比,以及部分参数的试验测量值与辨识值的比较,验证了本文辨识方法的有效性和优越性。 展开更多
关键词 系统辨识 无迹卡尔曼滤波器 船舶运动数学模型
在线阅读 下载PDF
电子档案信息化数据自适应无迹卡尔曼滤波降噪算法
16
作者 周婷 《电信科学》 2023年第8期102-108,共7页
针对降噪过程极易丢失原始数据,产生粗大误差后数据的噪声协方差初始值偏差的问题,研究了电子档案信息化数据自适应无迹卡尔曼(Kalman)滤波降噪算法。电子档案信息化架构包含数据层、业务层、用户层,数据层根据用户层的用户数据请求,完... 针对降噪过程极易丢失原始数据,产生粗大误差后数据的噪声协方差初始值偏差的问题,研究了电子档案信息化数据自适应无迹卡尔曼(Kalman)滤波降噪算法。电子档案信息化架构包含数据层、业务层、用户层,数据层根据用户层的用户数据请求,完成电子档案信息化数据预处理、决策、监测、分析等,通过拉以达(Laida)准则对电子档案信息化数据提出假设,获取标准偏差概率,确定区间剔除粗大误差,应用Sage-Husa滤波器估计剔除粗大误差后数据的噪声协方差、抑制初始值偏差,最大限度地保留其原始数据,利用无迹卡尔曼算法,实时估计电子档案信息化数据的未知噪声特性,完成电子档案信息化数据降噪,并通过虚拟感应服务连接数据层、用户层、业务层,在业务层呈现用户所需电子档案信息。实验结果表明,该算法能够有效去除电子档案信息化数据的多种噪声,并保留有效数据。 展开更多
关键词 电子档案 无迹卡尔曼 档案信息化 滤波降噪 Sage-Husa滤波器 拉以达准则
在线阅读 下载PDF
遮挡情况下刚体位姿估计的自适应无迹卡尔曼分布式融合 被引量:2
17
作者 冯远静 黄良鹏 张文安 《控制理论与应用》 EI CAS CSCD 北大核心 2020年第1期69-80,共12页
针对视觉目标位姿估计系统中常出现的因为特征点遮挡而造成系统估计结果不准确的问题,本文提出了一种利用自适应无迹卡尔曼滤波(AUKF)作为局部滤波器的分布式融合估计方法.通过引入改进的Sage-Husa噪声估计器自适应过程噪声.根据特征点... 针对视觉目标位姿估计系统中常出现的因为特征点遮挡而造成系统估计结果不准确的问题,本文提出了一种利用自适应无迹卡尔曼滤波(AUKF)作为局部滤波器的分布式融合估计方法.通过引入改进的Sage-Husa噪声估计器自适应过程噪声.根据特征点识别量将遮挡情况分为部分遮挡和严重遮挡,对部分遮挡子系统根据先验信息修复缺失观测点后进行局部滤波估计,严重遮挡子系统不参与融合,利用当前时刻整体估计结果对其进行初始化.通过仿真获取了区分遮挡情况的阈值,实验结果表明所提方法能够提升系统在遮挡情况下的估计精度与鲁棒性. 展开更多
关键词 无迹卡尔曼滤波器 自适应滤波 位姿估计 视觉传感器 视觉遮挡
在线阅读 下载PDF
改进型自适应无迹卡尔曼姿态算法 被引量:6
18
作者 侯江宽 马珺 贾华宇 《传感技术学报》 CAS CSCD 北大核心 2017年第10期1518-1524,共7页
提出了一种改进型自适应无迹卡尔曼滤波姿态算法,能够有效的解决MEMS陀螺仪的漂移和噪声问题,同时减小运动加速度对加速度计的影响。将改进的自适应Sage-Husa算法与无迹卡尔曼滤波器相结合,使量测噪声统计特性在线更新,提高系统的抗干... 提出了一种改进型自适应无迹卡尔曼滤波姿态算法,能够有效的解决MEMS陀螺仪的漂移和噪声问题,同时减小运动加速度对加速度计的影响。将改进的自适应Sage-Husa算法与无迹卡尔曼滤波器相结合,使量测噪声统计特性在线更新,提高系统的抗干扰能力,避免扩展卡尔曼滤波的线性化误差,可以得到精确的全姿态角。每次迭代只更新3个欧拉角,提高了系统的解算速度。飞行实验和分析表明:改进算法能够有效的提高姿态解算精度,收敛速度快,自适应能力强,稳定可靠,具有较强的鲁棒性,在干扰消失时能够快速得到准确姿态角。 展开更多
关键词 传感器 姿态解算 无迹卡尔曼滤波器 自适应Sage-Husa算法 多旋翼飞行器
在线阅读 下载PDF
半主动悬架的无迹卡尔曼状态观测器设计 被引量:2
19
作者 李宗华 董明明 王玉帅 《机械设计与制造》 北大核心 2019年第8期4-7,共4页
卡尔曼滤波器是线性动态系统中应用最广泛的一种状态估计方法。在非线性系统中,扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)被广泛应用,相比扩展卡尔曼滤波器,无迹卡尔曼滤波器准确度更高、更易于实现。在车辆动力学这种强的非线性系统中... 卡尔曼滤波器是线性动态系统中应用最广泛的一种状态估计方法。在非线性系统中,扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)被广泛应用,相比扩展卡尔曼滤波器,无迹卡尔曼滤波器准确度更高、更易于实现。在车辆动力学这种强的非线性系统中,无迹卡尔曼滤波器应用广泛。设计了一种基于无迹卡尔曼滤波器的半主动悬架系统状态观测器,讨论了不准确的过程噪声协方差Q和测量噪声协方差R、及测量信号组合的选择和不准确的模型参数对状态观测精度的影响,仿真结果表明不准确的过程噪声和测量噪声协方差、不合适的测量信号选择和模型参数不准确的干扰在不同程度上降低了状态估计精度。 展开更多
关键词 无迹卡尔曼滤波器 状态观测器 噪声协方差 测量信号选择 参数干扰
在线阅读 下载PDF
基于LQR和UKF的软体机器人无模型轨迹跟踪控制
20
作者 关胜闯 柳宇钧 +1 位作者 杨清昊 刘兆冰 《中国机械工程》 北大核心 2025年第3期570-575,583,共7页
针对软体机器人精确建模和控制问题提出一种新颖的非线性估计和控制策略,用于控制二维气动软体机器人的动态性能。采用基于Koopman算子的数据驱动方法建立二维气动软体机器人的线性模型。利用无迹卡尔曼滤波器(UKF)进行传感器数据滤波... 针对软体机器人精确建模和控制问题提出一种新颖的非线性估计和控制策略,用于控制二维气动软体机器人的动态性能。采用基于Koopman算子的数据驱动方法建立二维气动软体机器人的线性模型。利用无迹卡尔曼滤波器(UKF)进行传感器数据滤波和系统状态估计,同时利用线性二次型调节器(LQR)来实现轨迹跟踪的最优控制。仿真和实验比较结果一致表明,所提方法在轨迹跟踪性能方面优于另两种方法。 展开更多
关键词 软体机器人 Koopman算子 LQR控制 无迹卡尔曼滤波器
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部