期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
融合尺度降维和重检测的长期跟踪算法 被引量:1
1
作者 夏亮 张亚 +1 位作者 黄友锐 贾汉坤 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2021年第3期385-394,共10页
针对长期目标跟踪中存在的目标遮挡、尺度变化和光照变化等干扰造成的跟踪失败问题,提出一种融合尺度降维和重检测的长期目标跟踪算法.该算法在长期相关性跟踪算法的平移估计和尺度估计基础上,采用主成分分析降维策略来减少计算量,并建... 针对长期目标跟踪中存在的目标遮挡、尺度变化和光照变化等干扰造成的跟踪失败问题,提出一种融合尺度降维和重检测的长期目标跟踪算法.该算法在长期相关性跟踪算法的平移估计和尺度估计基础上,采用主成分分析降维策略来减少计算量,并建立高置信度样本集;当目标长期遮挡或丢失时,通过自适应阈值来启动在线分类检测器和最佳伙伴相似度匹配,重定位目标位置,并对模板均衡更新.在OTB-2015等标准数据集的部分序列上定量和定性评估的实验结果表明,文中算法的平均距离精度为95.4%,平均重叠成功率为89.2%,平均跟踪速度为23.68帧/s,且在遮挡、尺度变化和光照变化等场景下表现优异,能有效地实现长期目标跟踪. 展开更多
关键词 长期跟踪 相关滤波 主成分分析 高置信度样本 最佳伙伴相似
在线阅读 下载PDF
基于动态阈值和差异性检验的自训练算法
2
作者 吕佳 邱鸿波 肖锋 《智能系统学报》 CSCD 北大核心 2024年第4期839-852,共14页
针对自训练算法在迭代训练分类器的过程中存在难以有效选取高置信度样本以及误标记样本错误累积的问题,本文提出了基于动态阈值和差异性检验的自训练算法。引入样本的局部离群因子,据此剔除有标签样本中的离群点以及分类标注无标签样本... 针对自训练算法在迭代训练分类器的过程中存在难以有效选取高置信度样本以及误标记样本错误累积的问题,本文提出了基于动态阈值和差异性检验的自训练算法。引入样本的局部离群因子,据此剔除有标签样本中的离群点以及分类标注无标签样本,依据标注分批次处理无标签样本,以使模型更易选取到高置信度的无标签样本;根据新增伪标签样本的数量和对比隶属度的变化,设计一种动态隶属度阈值函数,提升高置信度样本的质量;定义密集距离度量样本间的差异性,分别计算伪标签样本与同类和不同类样本之间的密集距离之和,从而找出不确定度高的伪标签样本,并将此类样本并入下轮训练的无标签样本集中,缓解误标记样本错误累积的问题。实验结果表明,该算法在12个UCI基准数据集上均取得理想效果。 展开更多
关键词 自训练算法 误标记样本 高置信度样本 动态阈值 差异性检验 局部离群因子 对比隶属 密集距离
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部