期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于高维空间聚类的集中供热末端数据异常检测
被引量:
12
1
作者
孙文慧
张海伦
王雷
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2021年第5期235-242,共8页
因集中供热建筑结构、住户行为习惯等差异,末端住户供暖数据具有特征差异大、非线性强、数据量大、响应时间长等特征,在原数据空间中利用聚类分析进行异常检测造成类间数据交叉,精确性无法保证。本文提出高维高斯混合聚类算法,将数据集...
因集中供热建筑结构、住户行为习惯等差异,末端住户供暖数据具有特征差异大、非线性强、数据量大、响应时间长等特征,在原数据空间中利用聚类分析进行异常检测造成类间数据交叉,精确性无法保证。本文提出高维高斯混合聚类算法,将数据集映射到高维空间进行聚类,利用核函数映射、内积运算与高维特征空间分解等计算方法,提高精确度,规避维数灾难。搭建工业大数据分析平台,对比K-Means、高斯混合、恒虚警率、高维高斯混合算法聚类结果与异常检测精确度,本文所提算法将准确性提高到90.72%,误报率降低到5.92%,结合该算法完成4类异常用热数据集的解释与辨识。高维高斯混合聚类可以有效分析用户用热特征、检测异常数据,辅助降低采暖能耗,实现建筑节能。
展开更多
关键词
集中供热
异常检测
高维高斯混合聚类
空间映射
在线阅读
下载PDF
职称材料
题名
基于高维空间聚类的集中供热末端数据异常检测
被引量:
12
1
作者
孙文慧
张海伦
王雷
机构
山东建筑大学信息与电气工程学院
山东大学信息科学与工程学院
山东大学控制科学与工程学院
出处
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2021年第5期235-242,共8页
基金
国家自然科学基金(61903226)
山东省自然科学基金(ZR2020QF061,ZR2020QF068)项目资助。
文摘
因集中供热建筑结构、住户行为习惯等差异,末端住户供暖数据具有特征差异大、非线性强、数据量大、响应时间长等特征,在原数据空间中利用聚类分析进行异常检测造成类间数据交叉,精确性无法保证。本文提出高维高斯混合聚类算法,将数据集映射到高维空间进行聚类,利用核函数映射、内积运算与高维特征空间分解等计算方法,提高精确度,规避维数灾难。搭建工业大数据分析平台,对比K-Means、高斯混合、恒虚警率、高维高斯混合算法聚类结果与异常检测精确度,本文所提算法将准确性提高到90.72%,误报率降低到5.92%,结合该算法完成4类异常用热数据集的解释与辨识。高维高斯混合聚类可以有效分析用户用热特征、检测异常数据,辅助降低采暖能耗,实现建筑节能。
关键词
集中供热
异常检测
高维高斯混合聚类
空间映射
Keywords
district heating
anomaly detection
high dimensional Gaussian mixture clustering
space mapping
分类号
TP391.5 [自动化与计算机技术—计算机应用技术]
TH81 [机械工程—精密仪器及机械]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于高维空间聚类的集中供热末端数据异常检测
孙文慧
张海伦
王雷
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2021
12
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部