期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
面向高维不平衡数据的特征选择算法 被引量:3
1
作者 王振飞 袁佩瑶 +1 位作者 曹中亚 张利莹 《小型微型计算机系统》 CSCD 北大核心 2024年第8期1839-1846,共8页
针对传统高维不平衡数据集的分类算法存在偏向多数类、忽视少数类等问题,本文提出一种基于密度聚类和重要性度量的特征选择算法(DBIM).首先通过随机降采样的方法构造出多个平衡子集,使用DBSCAN密度聚类方法作为基分类器生成初始特征子空... 针对传统高维不平衡数据集的分类算法存在偏向多数类、忽视少数类等问题,本文提出一种基于密度聚类和重要性度量的特征选择算法(DBIM).首先通过随机降采样的方法构造出多个平衡子集,使用DBSCAN密度聚类方法作为基分类器生成初始特征子空间.然后按照重要度对特征进行排序选择出较强分类的特征.最后,为了避免特征之间的冗余性,设计基于类分布的权重指标与冗余性评价指标相结合的方法进行计算,生成高质量的特征子集.在8个公开数据集上的实验结果表明,本文提出DBIM算法可以生成高相关度且低冗余度的特征子集,对高维不平衡数据集进行有效降维,提高分类性能. 展开更多
关键词 高维不平衡数据 密度聚类 特征选择 相关性 冗余性
在线阅读 下载PDF
基于SVM的高维不平衡数据集分类算法 被引量:3
2
作者 赵小强 张露 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第2期452-461,共10页
由于数据量的不断增长,出现了大量的不平衡高维数据,传统的数据挖掘分类算法在处理这些数据时,易受到样本分布和维数的影响,存在分类性能不佳的问题.提出一种针对不平衡高维数据集的改进支持向量机(Supported Vector Machine,SVM)分类算... 由于数据量的不断增长,出现了大量的不平衡高维数据,传统的数据挖掘分类算法在处理这些数据时,易受到样本分布和维数的影响,存在分类性能不佳的问题.提出一种针对不平衡高维数据集的改进支持向量机(Supported Vector Machine,SVM)分类算法,首先通过核函数将数据集映射到特征空间中,再引入改进的核SMOTE(Kernel Synthetic Minority Over-sampling Technique)算法而得到正类样本,使两类样本数目平衡化;然后将维数高的数据集通过稀疏表示的方法投影到低维的空间中,实现降维;最后根据空间的距离关系来确定在输入空间中合成样本的原像,再对得到的平衡样本集通过SVM来分类,通过仿真实验验证了该算法对于高维不平衡数据集有较优的分类性能. 展开更多
关键词 高维不平衡数据 分类算法 支持向量机(SVM) 核SMOTE 稀疏表示
在线阅读 下载PDF
基于混合采样和特征选择的改进随机森林算法研究 被引量:21
3
作者 汪力纯 刘水生 《南京邮电大学学报(自然科学版)》 北大核心 2022年第1期81-89,共9页
随机森林算法是根据Bagging抽样和随机特征子集划分策略,由多棵决策树组成的集成算法。与其他分类算法相比,随机森林算法有更高的分类精度、更低的泛化误差以及训练速度快等特点,因此在数据挖掘领域得到了多方面的应用。然而随机森林算... 随机森林算法是根据Bagging抽样和随机特征子集划分策略,由多棵决策树组成的集成算法。与其他分类算法相比,随机森林算法有更高的分类精度、更低的泛化误差以及训练速度快等特点,因此在数据挖掘领域得到了多方面的应用。然而随机森林算法在分类预测特征维度高且不平衡的数据时,分类性能受到了极大限制。为了更好地处理高维不平衡数据,文中提出了一种基于混合采样和特征选择的改进随机森林算法(Hybrid Samping&Feature Selection Random Forest,HF_RF)。该算法首先从数据层面出发,通过SMOTE算法和随机欠采样相结合的方式对高维不平衡数据集进行预处理,同时引入聚类算法对SMOTE算法进行改进,提高对负类样本的处理性能;然后从算法层面出发,通过ReliefF算法对平衡后的高维数据赋予不同的权值,剔除不相关和冗余特征,对高维数据进行维度约简;最后采用加权投票原则进一步提高算法的分类性能。实验结果显示,改进后的算法与原算法相比,在处理高维不平衡数据方面的各评价指标更高,证明HF_RF算法对于高维不平衡数据的分类性能高于传统随机森林算法。 展开更多
关键词 随机森林 混合采样 特征选择 高维不平衡数据 HF_RF算法
在线阅读 下载PDF
基于Hubness与类加权的k最近邻分类算法 被引量:6
4
作者 李金孟 林亚平 祝团飞 《计算机工程》 CAS CSCD 北大核心 2018年第4期248-252,261,共6页
针对高维不平衡数据中维数灾难和类不平衡分布问题,提出一种改进k最近邻(kNN)分类算法HWNN。将样本的k发生分布作为其在预测时对各个类的支持度,以此减少高维数据中hubs对kNN分类带来的潜在负面影响。通过类加权的方式增加少数类在所有... 针对高维不平衡数据中维数灾难和类不平衡分布问题,提出一种改进k最近邻(kNN)分类算法HWNN。将样本的k发生分布作为其在预测时对各个类的支持度,以此减少高维数据中hubs对kNN分类带来的潜在负面影响。通过类加权的方式增加少数类在所有样本k发生中的分布比例,以提升对少数类样本的预测精度。在16个不平衡UCI数据集上的实验结果表明,该算法在高维不平衡数据中的分类结果优于典型kNN方法,且在普通维度的不平衡数据中优势同样明显。 展开更多
关键词 Hubness现象 高维不平衡数据 维数灾难 数据分类 k发生 k最近邻分类
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部