High-voltage sodium-ion batteries(SIBs)are emerging as promising candidates for large-scale energy storage systems due to their abundant sodium source and high energy density.However,the instability of the electrode e...High-voltage sodium-ion batteries(SIBs)are emerging as promising candidates for large-scale energy storage systems due to their abundant sodium source and high energy density.However,the instability of the electrode electrolyte interphase remains a critical barrier to the potential use of high-voltage SIBs.Herein,sodium difluorophosphate(NaDFP)and fluoroethylene carbonate(FEC)serve as functional electrolyte additives to stabilize the interface of the high-voltage cathode.The oxidative competition between FEC and NaDFP facilitates the robust formation of the cathode-electrolyte interface(CEI)layer,enriched with inorganic components such as NaF/NaPO_(x)F_(y).The highly conductive NaF/NaPO_(x)F_(y)and inorganics provide fast ion transport pathways and mechanical strength,thereby mitigating the decomposition of carbonates and NaPF_(6).The half-cell equipped with BE 2 F+0.5 DFP demonstrates 93.9%capacity retention at 4.3 V across 600 cycles,showcasing excellent cycling capability.Full HC||NVOPF cells exhibit sustained performance with 91.69%capacity retention and a capacity of 91.57 mA·h/g over 1000 cycles at a 5 C rate.This study is poised to garner increased scholarly interest in the domain of rational electrolyte formulation for practical applications.展开更多
基金National Natural Science Foundation of China(22005163,U1932205)Natural Science Foundation of Shandong Province(ZR2020MA084)+1 种基金Key R&D Program of Shandong Province(2021CXGC010401)Taishan Scholars Program(ts201712035)。
基金Project(2023QNRC001)supported by the Young Elite Scientists Sponsorship Program by CAST,ChinaProject(51932011)supported by the National Natural Science Foundation of China+1 种基金Project(2023JJ10060)supported by the Natural Science Foundation of Hunan Province,ChinaProject(23A0003)supported by the Scientific Research Fund of Hunan Provincial Education Department,China。
文摘High-voltage sodium-ion batteries(SIBs)are emerging as promising candidates for large-scale energy storage systems due to their abundant sodium source and high energy density.However,the instability of the electrode electrolyte interphase remains a critical barrier to the potential use of high-voltage SIBs.Herein,sodium difluorophosphate(NaDFP)and fluoroethylene carbonate(FEC)serve as functional electrolyte additives to stabilize the interface of the high-voltage cathode.The oxidative competition between FEC and NaDFP facilitates the robust formation of the cathode-electrolyte interface(CEI)layer,enriched with inorganic components such as NaF/NaPO_(x)F_(y).The highly conductive NaF/NaPO_(x)F_(y)and inorganics provide fast ion transport pathways and mechanical strength,thereby mitigating the decomposition of carbonates and NaPF_(6).The half-cell equipped with BE 2 F+0.5 DFP demonstrates 93.9%capacity retention at 4.3 V across 600 cycles,showcasing excellent cycling capability.Full HC||NVOPF cells exhibit sustained performance with 91.69%capacity retention and a capacity of 91.57 mA·h/g over 1000 cycles at a 5 C rate.This study is poised to garner increased scholarly interest in the domain of rational electrolyte formulation for practical applications.