This work is aimed to study the effect of boron on wear resistance of Fe-Cr-B alloys containing different boron contents(0 wt%,5 wt%,7 wt%and 9 wt%)from room temperature(RT)to 800°C in order to explore their appl...This work is aimed to study the effect of boron on wear resistance of Fe-Cr-B alloys containing different boron contents(0 wt%,5 wt%,7 wt%and 9 wt%)from room temperature(RT)to 800°C in order to explore their applications as high-temperature wear resistant mechanical parts.Additionally,the wear mechanism of alloys is evaluated.The tribological properties of alloys are systematically studied by using a ball-on-disc tribometer at 10 N and 0.20 m/s from RT to 800°C sliding against Si3N4 ceramic ball.The boron element greatly improves the wear resistance of specimens as compared with that of unreinforced specimen.The friction coefficients of specimens decrease with increasing of testing temperature.The wear rates of Fe-Cr-B alloys decrease firstly and then raise with the increase of boron content.The specific wear rates of specimens with boron are 1/10 of the unreinforced specimen.Fe-21wt%Cr-7wt%B keeps the best tribological properties at high temperature.展开更多
The high-temperature acoustic absorption performance of porous titanium fiber material was investigated in terms of sample thickness, porosity, temperature, air-cavity thickness and double-layer structure arrangement....The high-temperature acoustic absorption performance of porous titanium fiber material was investigated in terms of sample thickness, porosity, temperature, air-cavity thickness and double-layer structure arrangement. The effects on absorption coefficient were systematically assessed. The results show that the sound absorption performance is improved by increasing the sample porosity and/or thickness, and/or increasing the air-cavity thickness. Meanwhile, increasing the temperature gives better acoustic absorption performance in the low frequency range but also lowers the performance in the high frequency range, while double-layer structure enables better acoustic absorption performance.展开更多
基金Projects(51775365,51405329) supported by the National Natural Science Foundation of ChinaProject(2015M570239) supported by the China Postdoctoral Science Foundation
文摘This work is aimed to study the effect of boron on wear resistance of Fe-Cr-B alloys containing different boron contents(0 wt%,5 wt%,7 wt%and 9 wt%)from room temperature(RT)to 800°C in order to explore their applications as high-temperature wear resistant mechanical parts.Additionally,the wear mechanism of alloys is evaluated.The tribological properties of alloys are systematically studied by using a ball-on-disc tribometer at 10 N and 0.20 m/s from RT to 800°C sliding against Si3N4 ceramic ball.The boron element greatly improves the wear resistance of specimens as compared with that of unreinforced specimen.The friction coefficients of specimens decrease with increasing of testing temperature.The wear rates of Fe-Cr-B alloys decrease firstly and then raise with the increase of boron content.The specific wear rates of specimens with boron are 1/10 of the unreinforced specimen.Fe-21wt%Cr-7wt%B keeps the best tribological properties at high temperature.
基金Projects(51671152,51304153)supported by the National Natural Science Foundation of China
文摘The high-temperature acoustic absorption performance of porous titanium fiber material was investigated in terms of sample thickness, porosity, temperature, air-cavity thickness and double-layer structure arrangement. The effects on absorption coefficient were systematically assessed. The results show that the sound absorption performance is improved by increasing the sample porosity and/or thickness, and/or increasing the air-cavity thickness. Meanwhile, increasing the temperature gives better acoustic absorption performance in the low frequency range but also lowers the performance in the high frequency range, while double-layer structure enables better acoustic absorption performance.