期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于自适应高斯-厄米特滤波的锂电SOC估算研究 被引量:1
1
作者 张凤博 孙桓五 杨淇 《机械设计与制造》 北大核心 2021年第11期147-150,共4页
对锂电池荷电状态(state of charge,SOC)进行准确地估算十分重要。由于SOC呈非线性特征,并且受多种因素的动态影响,准确估计困难。本文利用高斯-厄米特滤波(Gauss-Hermite filter,GHF)的思想,结合Thevenin等效电路模型,提出一种自适应高... 对锂电池荷电状态(state of charge,SOC)进行准确地估算十分重要。由于SOC呈非线性特征,并且受多种因素的动态影响,准确估计困难。本文利用高斯-厄米特滤波(Gauss-Hermite filter,GHF)的思想,结合Thevenin等效电路模型,提出一种自适应高斯-厄米特滤波(adaptive Gauss-Hermite filter,AGHF)算法对SOC实时估计更新。利用MATLAB/Simulink建立仿真模型,并与扩展卡尔曼滤波(extended Kalman filter,EKF)算法及传统的高斯-厄米特滤波算法相比较。通过分析对比可以发现该算法的估算精度较高,可以有效地控制滤波发散。 展开更多
关键词 锂电池 荷电状态(SOC) 等效电路模型 自适应高斯-厄米特滤波(AGHF)
在线阅读 下载PDF
高斯-厄米特粒子滤波器 被引量:77
2
作者 袁泽剑 郑南宁 贾新春 《电子学报》 EI CAS CSCD 北大核心 2003年第7期970-973,共4页
针对非线性、非高斯系统状态的在线估计问题 ,本文提出一种新的基于序贯重要性抽样的粒子滤波算法 .在滤波算法中 ,我们用一簇高斯 厄米特滤波器 (GHF)来产生重要性概率密度函数 .此概率密度在系统状态的转移概率的基础上融入最新的观... 针对非线性、非高斯系统状态的在线估计问题 ,本文提出一种新的基于序贯重要性抽样的粒子滤波算法 .在滤波算法中 ,我们用一簇高斯 厄米特滤波器 (GHF)来产生重要性概率密度函数 .此概率密度在系统状态的转移概率的基础上融入最新的观测数据 ,因此更接近于系统状态的后验概率 .理论分析与实验结果表明 :在观测模型具有高精度的场合或似然函数位于系统状态转移概率的尾部时 ,用GHF产生重要性概率密度函数的粒子滤波即高斯 厄米特粒子滤波 (GHPF)的性能要明显地优于标准的粒子滤波、扩展的卡尔曼滤波、GHF . 展开更多
关键词 状态估计 粒子滤波 高斯-厄米特滤波 序贯重要性抽样 重要性概率密度函数
在线阅读 下载PDF
机动目标跟踪的高斯-厄米特粒子滤波算法 被引量:3
3
作者 朱志宇 姜长生 《系统工程与电子技术》 EI CSCD 北大核心 2007年第10期1596-1599,共4页
闪烁噪声环境下的机动目标跟踪实质上是一个非线性非高斯系统滤波问题,为了提高跟踪精度,应用高斯-厄米特滤波方法来产生粒子滤波器(PF)的重要密度函数,解决了PF算法的粒子退化问题,并给出了基于高斯-厄米特粒子滤波器(GHPF)的闪烁噪声... 闪烁噪声环境下的机动目标跟踪实质上是一个非线性非高斯系统滤波问题,为了提高跟踪精度,应用高斯-厄米特滤波方法来产生粒子滤波器(PF)的重要密度函数,解决了PF算法的粒子退化问题,并给出了基于高斯-厄米特粒子滤波器(GHPF)的闪烁噪声机动目标跟踪算法。仿真结果表明,各种PF算法对闪烁噪声机动目标的跟踪精度远远好于卡尔曼滤波方法;同时GHPF不仅提高了估计精度,而且减少了粒子数目,降低了算法的复杂度,因此其综合性能要好于其他PF算法,具有较高的跟踪精度和较好的实时性。 展开更多
关键词 滤波 机动目标跟踪 高斯-厄米特滤波 非线性系统 噪声
在线阅读 下载PDF
闪烁噪声环境下机动目标跟踪的改进的高斯-厄米特粒子滤波 被引量:5
4
作者 崔彦凯 梁晓庚 《计算机工程与科学》 CSCD 北大核心 2013年第9期187-190,共4页
针对闪烁噪声环境下机动目标跟踪的非线性、非高斯问题,提出了一种改进的高斯-厄米特粒子滤波算法。和传统的高斯-厄米特粒子滤波算法相比,在生成粒子集时,改进的高斯-厄米特粒子滤波算法采用高斯-厄米特滤波对当前时刻的各个粒子进行估... 针对闪烁噪声环境下机动目标跟踪的非线性、非高斯问题,提出了一种改进的高斯-厄米特粒子滤波算法。和传统的高斯-厄米特粒子滤波算法相比,在生成粒子集时,改进的高斯-厄米特粒子滤波算法采用高斯-厄米特滤波对当前时刻的各个粒子进行估计,将得到的估计值和协方差直接作为粒子滤波算法的粒子集及相应的协方差。仿真结果表明,改进的高斯-厄米特粒子滤波算法对闪烁噪声环境下的机动目标能够进行有效的跟踪,提高了跟踪精度。 展开更多
关键词 高斯-厄米特滤波 粒子滤波 闪烁噪声 目标跟踪
在线阅读 下载PDF
基于强跟踪GHF的里程计辅助SINS动基座对准研究 被引量:2
5
作者 武萌 汤霞清 黄湘远 《压电与声光》 CSCD 北大核心 2017年第5期784-789,共6页
为提高车载捷联惯导系统动基座初始对准精度,提出了一种强跟踪降维高斯-厄米特非线性动基座初始对准算法。里程计辅助捷联惯导粗对准后水平姿态误差角为小角度,里程计辅助捷联惯导动基座对准模型简化为大方位失准角非线性模型,采用降维... 为提高车载捷联惯导系统动基座初始对准精度,提出了一种强跟踪降维高斯-厄米特非线性动基座初始对准算法。里程计辅助捷联惯导粗对准后水平姿态误差角为小角度,里程计辅助捷联惯导动基座对准模型简化为大方位失准角非线性模型,采用降维高斯-厄米特滤波(GHF),以少数非线性状态积分点估计整个系统状态,减少计算量,应用强跟踪滤波,提高系统对突变的滤波状态的跟踪能力。实验表明,应用强跟踪降维高斯-厄米特滤波提高了动基座初始对准精度,减少了计算量,提高了滤波的稳定性。 展开更多
关键词 捷联惯导 大失准角 动基座初始对准 高斯-米特非线性滤波 强跟踪
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部