期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
条件线性高斯状态空间模型的GSF-KF滤波算法
1
作者 尹建君 张建秋 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第18期4949-4951,4955,共4页
算法将模型中的条件线性状态方程代入观测方程,并融合线性状态的过程噪声和观测噪声,再与非线性状态方程联立,由高斯和滤波器(Gaussian sum filter,GSF)获得非线性状态的估计;然后将估计值代入线性状态方程与观测方程,由卡尔曼滤波器(Ka... 算法将模型中的条件线性状态方程代入观测方程,并融合线性状态的过程噪声和观测噪声,再与非线性状态方程联立,由高斯和滤波器(Gaussian sum filter,GSF)获得非线性状态的估计;然后将估计值代入线性状态方程与观测方程,由卡尔曼滤波器(Kalman Filter,KF)获得线性状态的估计。此外,获得的非线性状态估计的方差还用于修正线性状态的估计。将GSF-KF算法应用于目标跟踪的仿真结果表明,与现有Rao-Blackwellized粒子滤波器(Rao-Blackwellized Particle Filter,RBPF)相比,新方法在保证精度的同时,明显提高了实时性,计算时间仅约为RBPF的7%。 展开更多
关键词 信息处理技术 高斯滤波-卡尔曼滤波(GSF-KF) Rao-Blackwellized粒子滤波器(RBPF) 条件线性高斯 目标跟踪
在线阅读 下载PDF
条件线性高斯模型的Gauss Hermite filter-Kalman filter算法 被引量:2
2
作者 尹建君 张建秋 《系统工程与电子技术》 EI CSCD 北大核心 2008年第12期2312-2315,共4页
针对条件线性高斯状态空间模型,提出了高斯厄密特滤波-卡尔曼滤波(Gauss Hermite filter-Kalmanfilter,GHF-KF)滤波算法。算法将模型中的条件线性状态方程代入观测方程,并融合线性状态的过程噪声和观测噪声,由GHF获得非线性状态的估计;... 针对条件线性高斯状态空间模型,提出了高斯厄密特滤波-卡尔曼滤波(Gauss Hermite filter-Kalmanfilter,GHF-KF)滤波算法。算法将模型中的条件线性状态方程代入观测方程,并融合线性状态的过程噪声和观测噪声,由GHF获得非线性状态的估计;再将非线性状态的估计均值代入线性状态方程与观测方程,由KF获得线性状态的估计;获得的非线性状态估计方差还用于修正由KF估计的线性状态,以提高精度。将GHF-KF算法应用于目标跟踪的仿真结果表明,与现有Rao-Blackwellized粒子滤波器RBPF相比,新方法在保证估计精度的同时,明显提高了实时性,计算时间仅约为RBPF的5%。 展开更多
关键词 信息处理技术 高斯.厄密特滤波-卡尔曼滤波 RAO-BLACKWELLIZED粒子滤波 条件线性高斯 目标跟踪
在线阅读 下载PDF
震后特殊环境下压埋人员精确定位算法
3
作者 成鹏 肖东升 《震灾防御技术》 CSCD 北大核心 2024年第1期191-198,共8页
针对目前对震后压埋人员定位精度较低、探测设备成本高且易受环境影响等不足,提出适用于压埋环境特性的压埋人员手机WiFi定位方法,通过衰减因子模型对WiFi探针获取的RSSI数据进行距离解算,结合简化压埋环境内部信号传输方式,采用高斯-... 针对目前对震后压埋人员定位精度较低、探测设备成本高且易受环境影响等不足,提出适用于压埋环境特性的压埋人员手机WiFi定位方法,通过衰减因子模型对WiFi探针获取的RSSI数据进行距离解算,结合简化压埋环境内部信号传输方式,采用高斯-卡尔曼滤波对获取的RSSI数据进行处理,通过模型测定的距离,利用改进附有参数的加权最小二乘平差方法,结合粒子群优化算法,最终得到压埋人员手机平面坐标位置。研究结果表明,该方法具有较高精度,在10 m×10 m范围内其平面坐标定位误差在0.3 m左右,可为震后压埋人员应急救援提供辅助决策。 展开更多
关键词 压埋环境 衰减因子模型 压埋人员定位 高斯-卡尔曼滤波 粒子群优化算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部