期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
自适应并行模型组合的鲁棒语音身份识别算法 被引量:6
1
作者 李聪 葛洪伟 《信号处理》 CSCD 北大核心 2018年第7期867-875,共9页
由于环境噪声的影响,实际应用中说话人识别系统性能会出现急剧下降。提出了一种基于高斯混合模型-通用背景模型和自适应并行模型组合的鲁棒性语音身份识别方法。自适应并行模型组合是一种噪声鲁棒性的特征补偿算法,能够有效减少训练环... 由于环境噪声的影响,实际应用中说话人识别系统性能会出现急剧下降。提出了一种基于高斯混合模型-通用背景模型和自适应并行模型组合的鲁棒性语音身份识别方法。自适应并行模型组合是一种噪声鲁棒性的特征补偿算法,能够有效减少训练环境与测试环境之间的不匹配现象,从而提高系统识别准确率和抗噪性能。首先,算法从测试语音中估计出噪声特征,然后用一个单高斯模型对噪声特征进行拟合得到噪声均值和协方差。最后,根据得出的噪声均值和协方差,调整训练好的高斯混合模型均值向量和协方差矩阵,使其尽可能地匹配测试环境。实验结果表明,该方法可以准确地重构干净语音的高斯混合模型参数,并且能够显著提高说话人识别的准确率,特别是在低信噪比情况下。 展开更多
关键词 说话人识别 特征补偿 并行模型组合 高斯混合模型-通用背景模型 噪声
在线阅读 下载PDF
改进i-向量说话人识别算法研究 被引量:2
2
作者 邢玉娟 潘颖 曹晓丽 《科学技术与工程》 北大核心 2014年第34期224-228,共5页
针对信道变化环境下说话人识别系统鲁棒性差及识别率低的问题,提出一种改进i-向量说话人确认算法。首先,利用系统注册说话人GMM-UBM提取话者i-向量;然后,采用加权线性判别分析对i-向量降维和信道补偿,提取更具判别性的特征向量;紧接着,... 针对信道变化环境下说话人识别系统鲁棒性差及识别率低的问题,提出一种改进i-向量说话人确认算法。首先,利用系统注册说话人GMM-UBM提取话者i-向量;然后,采用加权线性判别分析对i-向量降维和信道补偿,提取更具判别性的特征向量;紧接着,结合类内协方差归一化技术和ZT-norm规整技术对余玄距离得分进行规整,进一步消除信道干扰;最后,构建高鲁棒性余玄距离分类器判定目标说话人。仿真实验结果表明该算法可以有效地提高系统性能。 展开更多
关键词 说话人确认 i-向量 加权线性判别 类内协方差规整 高斯通用背景模型
在线阅读 下载PDF
基于i-向量和PCA字典学习稀疏表示的说话人确认 被引量:1
3
作者 舒毅 邢玉娟 《计算机工程与应用》 CSCD 北大核心 2016年第18期144-147,166,共5页
稀疏表示以其出色的分类性能成为说话人确认研究的热点,其中过完备字典的构建是关键,直接影响其性能。为了提高说话人确认系统的鲁棒性,同时解决稀疏表示过完备字典中存在噪声及信道干扰信息的问题,提出一种基于i-向量的主成分稀疏表示... 稀疏表示以其出色的分类性能成为说话人确认研究的热点,其中过完备字典的构建是关键,直接影响其性能。为了提高说话人确认系统的鲁棒性,同时解决稀疏表示过完备字典中存在噪声及信道干扰信息的问题,提出一种基于i-向量的主成分稀疏表示字典学习算法。该算法在高斯通用背景模型的基础上提取说话人的i-向量,并使用类内协方差归一化技术对i-向量进行信道补偿;根据信道补偿后的说话人i-向量的均值向量估计其信道偏移空间,在该空间采用主成分分析方法提取低维信道偏移主分量,用于重新计算说话人i-向量,从而达到进一步抑制i-向量中信道干扰的目的;将新的i-向量作为字典原子构建高鲁棒性稀疏表示过完备字典。在测试阶段,测试语音的i-向量在该字典上寻找其稀疏表示系数向量,根据系数向量对测试i-向量的重构误差确定目标说话人。仿真实验表明,该算法具有良好的识别性能。 展开更多
关键词 说话人确认 i-向量 稀疏表示 过完备字典 高斯通用背景模型
在线阅读 下载PDF
一种改进的基于GMM-UBM的法庭自动说话人识别系统 被引量:4
4
作者 王华朋 杨军 +1 位作者 吴鸣 许勇 《中国科学院大学学报(中英文)》 CAS CSCD 北大核心 2013年第6期800-805,共6页
对基于高斯混合模型(GMM)的法庭自动说话人识别系统进行改进.通过参考人群数据库降低了对嫌疑人语音样本数量的需求.以小规模背景人群数据库建立改进的基于高斯混合模型-通用背景模型(GMM-UBM)的法庭自动说话人识别系统.以固定电话信道... 对基于高斯混合模型(GMM)的法庭自动说话人识别系统进行改进.通过参考人群数据库降低了对嫌疑人语音样本数量的需求.以小规模背景人群数据库建立改进的基于高斯混合模型-通用背景模型(GMM-UBM)的法庭自动说话人识别系统.以固定电话信道和移动手机信道的数据库进行了系统的测试. 展开更多
关键词 似然比 法庭自动说话人识别 高斯混合模型-通用背景模型
在线阅读 下载PDF
SMFCC:一种新的语音信号特征提取方法 被引量:4
5
作者 汪海彬 余正涛 +1 位作者 毛存礼 郭剑毅 《计算机应用》 CSCD 北大核心 2016年第6期1735-1740,共6页
针对说话人识别系统中存在的有效语音特征提取以及噪声影响的问题,提出了一种新的语音特征提取方法——基于S变换的美尔倒谱系数(SMFCC).该方法是在传统美尔倒谱系数(MFCC)的基础上利用S变换的二维时频多分辨率特性,以及奇异值分解(SVD... 针对说话人识别系统中存在的有效语音特征提取以及噪声影响的问题,提出了一种新的语音特征提取方法——基于S变换的美尔倒谱系数(SMFCC).该方法是在传统美尔倒谱系数(MFCC)的基础上利用S变换的二维时频多分辨率特性,以及奇异值分解(SVD)方法的二维时频矩阵有效去噪性,并结合相关统计分析方法最终获得语音特征.采用TIMIT语音数据库,将所提的特征和现有特征进行对比实验.SMFCC特征的等错误率(EER)和最小检测代价(Min DCF)均小于线性预测倒谱系数(LPCC)、MFCC及其结合方法 LMFCC,比MFCC的EER和Min DCF08分别下降了3.6%与17.9%.实验结果表明所提方法能够有效去除语音信号中的噪声,提升局部分辨率. 展开更多
关键词 S变换 奇异值分解 基于S变换的美尔倒谱系数 高斯混合模型-通用背景模型 说话人识别
在线阅读 下载PDF
基于声纹识别的智能照明语音识别算法研究 被引量:9
6
作者 王建平 马兰兰 孙伟 《传感器与微系统》 CSCD 2020年第6期37-40,44,共5页
提出了一种基于声纹识别的智能照明语音识别算法。采用短时能量和短时平均过零率判别声控信号;采用基于高斯混合模型-通用背景模型(GMM-UBM)的方法判定声控人的身份;采用基于动态时间规整(DTW)的方法识别语义。通过建立多个身份人和多... 提出了一种基于声纹识别的智能照明语音识别算法。采用短时能量和短时平均过零率判别声控信号;采用基于高斯混合模型-通用背景模型(GMM-UBM)的方法判定声控人的身份;采用基于动态时间规整(DTW)的方法识别语义。通过建立多个身份人和多种声控命令的自适应实时语音训练样本库,采用对数似然分法和矢量累积距离法实现声控人身份认定与声控信号语义识别。仿真实验结果表明:该算法能快速准确判定与识别智能照明声控信号的身份和语义。 展开更多
关键词 声纹识别 智能照明 高斯混合模型-通用背景模型 动态时间规整
在线阅读 下载PDF
语种识别算法中GSV计算的定点仿真与实现 被引量:1
7
作者 张丽 杨镇西 吉立新 《计算机工程与设计》 CSCD 北大核心 2012年第2期679-683,共5页
基于GSV-SVM的语种识别方法是目前最为流行的语种识别方法之一,其采用基于通用背景模型GMM-UBM的GSV作为声学模型,支持向量机SVM作为区分模型。大量仿真测试结果表明,GSV在整个系统中占的运算量为80%左右,是算法硬件实现的瓶颈。鉴于此... 基于GSV-SVM的语种识别方法是目前最为流行的语种识别方法之一,其采用基于通用背景模型GMM-UBM的GSV作为声学模型,支持向量机SVM作为区分模型。大量仿真测试结果表明,GSV在整个系统中占的运算量为80%左右,是算法硬件实现的瓶颈。鉴于此,对基于GSV的硬件实现方法进行了研究,提出了一种快速GSV定点计算方法,其采用addlog运算简化对数似然函数的计算,完成了语种识别的高效定点实现。实验结果表明,该定点方法的识别率与浮点识别基本一致,满足应用要求。 展开更多
关键词 语种识别 高斯混合模型-通用背景模型 GMM超矢量 定点实现 addlog运算
在线阅读 下载PDF
非线性幂变换Gammachirp滤波器的鲁棒语音特征提取 被引量:3
8
作者 李聪 葛洪伟 《计算机科学与探索》 CSCD 北大核心 2019年第8期1351-1359,共9页
针对归一化功率倒谱系数(PNCC)在较低信噪比噪声环境下说话人识别鲁棒性不佳的问题,提出了非线性幂函数变换伽马啁啾频率倒谱系数(NPGFCC)的抗噪语音特征提取算法。相比PNCC,NPGFCC的不同之处在于其采用符合人耳听觉特性的归一化压缩Gam... 针对归一化功率倒谱系数(PNCC)在较低信噪比噪声环境下说话人识别鲁棒性不佳的问题,提出了非线性幂函数变换伽马啁啾频率倒谱系数(NPGFCC)的抗噪语音特征提取算法。相比PNCC,NPGFCC的不同之处在于其采用符合人耳听觉特性的归一化压缩Gammachirp滤波器组代替Gammatone滤波器组进行滤波,并在特征参数中融合了分段式非线性幂函数变换的方式。另外,算法中利用了均值方差归一化和时间序列滤波等技术的方法,进一步提高了其在噪声环境下的鲁棒性,并在改进的i-vector+PLDA模型下进行了测试。实验结果表明,相较于目前常用的一些说话人语音特征提取算法,在不同噪声和不同信噪比下,NPGFCC特征具有最佳抗噪性能,特别是在信噪比较低的情况下,与其他语音特征相比,NPGFCC特征具有更大的优势。 展开更多
关键词 特征提取 说话人识别 伽马啁啾滤波器 高斯混合模型-通用背景模型(GMM-UBM) 辨识向量(i-vector) 概率线性判别分析(PLDA)
在线阅读 下载PDF
基于耳蜗倒谱系数和Teager能量算子相位融合的说话人识别系统 被引量:4
9
作者 茅正冲 王俊俊 《南京理工大学学报》 EI CAS CSCD 北大核心 2018年第1期82-88,共7页
为了提高说话人识别系统的性能,该文在传统特征的基础上提出利用相位特征对听觉倒谱特征进行补偿的方法。该方法利用Teager能量算子(Teager energy operator,TEO)能够真实反映气流在通过声道系统呈现的涡流非线性作用的模型,再利用希尔... 为了提高说话人识别系统的性能,该文在传统特征的基础上提出利用相位特征对听觉倒谱特征进行补偿的方法。该方法利用Teager能量算子(Teager energy operator,TEO)能够真实反映气流在通过声道系统呈现的涡流非线性作用的模型,再利用希尔伯特变换从TEO导出分析信号的瞬时相位信息,结合耳蜗倒谱系数(Cochlear filter cepstral coefficients,CFCC)得到融合特征参数。实现了对特征参数的补偿,提高了说话人识别系统的识别率。使用NIST-2002说话者识别评估(Speakers recognition evaluation,SRE)数据库,在高斯混合模型-通用背景模型(Gaussian mixture model-universal background model,GMM-UBM)的说话人识别系统上进行实验。实验结果表明TEO相位与CFCC的结合比单独CFCC更好,其识别精度比现有的CFCC特征和线性预测梅尔频率倒谱系数(Linear prediction Meyer frequency cepstral coefficient,LPMFCC)分别提高了8.32%和3.15%。这表明TEO相位包含与CFCC特征互补的信息,且具有较高的识别率。 展开更多
关键词 能量算子 耳蜗倒谱系数 高斯混合模型-通用背景模型 说话人识别
在线阅读 下载PDF
基于特征相对贡献度对加权Mel倒谱的改进 被引量:5
10
作者 王家盛 郭其威 +1 位作者 吴松 马建敏 《声学技术》 CSCD 北大核心 2021年第3期408-414,共7页
在声纹识别系统的搭建过程中,提高识别率的一个重要做法是使语音信号中能够提取出的特征尽可能包含更多的说话人个性特征。为了探究特征参数各分量对识别系统性能的影响,文章基于高斯混合-通用背景模型(Gaussian Mixture Model-Universa... 在声纹识别系统的搭建过程中,提高识别率的一个重要做法是使语音信号中能够提取出的特征尽可能包含更多的说话人个性特征。为了探究特征参数各分量对识别系统性能的影响,文章基于高斯混合-通用背景模型(Gaussian Mixture Model-Universal Background Model,GMM-UBM)基线系统,研究了在无噪环境中各维特征组合下的识别率,利用增减分量法定量计算出各维特征分量对识别率的相对贡献程度,并根据贡献度的强弱对各维特征分量进行合理加权,得到了贡献度拟合权重系数,将此系数用于改进梅尔倒谱系数(Mel Frequency Cepstrum Coefficient,MFCC)特征参数。仿真结果表明,对特征参数进行贡献度拟合权重系数加权后,声纹识别的正确率得到了提升。 展开更多
关键词 增减分量法 贡献度 梅尔(Mel)倒谱系数 高斯混合-通用背景模型(GMM-UBM)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部