期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于高斯过程分类器的变压器故障诊断 被引量:46
1
作者 尹金良 朱永利 +2 位作者 俞国勤 邵宇鹰 关宏 《电工技术学报》 EI CSCD 北大核心 2013年第1期158-164,共7页
构建了基于拉普拉斯近似方法的高斯过程分类器(LGPC)。LGPC可自行优化超参数,以概率形式输出分类结果,便于问题的不确定性分析,从而克服SVM规则化系数、核函数参数确定困难等局限。在用典型分类数据验证LGPC在分类性能方面优于SVM的基础... 构建了基于拉普拉斯近似方法的高斯过程分类器(LGPC)。LGPC可自行优化超参数,以概率形式输出分类结果,便于问题的不确定性分析,从而克服SVM规则化系数、核函数参数确定困难等局限。在用典型分类数据验证LGPC在分类性能方面优于SVM的基础上,提出了基于LGPC的变压器故障诊断方法,并给出了其具体实现方法。通过工程实例验证了均值函数采用常函数、协方差函数采用全平方指数函数、似然函数采用误差函数时,故障诊断的正确率较高。同基于SVM的故障诊断方法相比,本文所提方法可以取得更高的故障诊断正确率,具有可行性和推广性。 展开更多
关键词 高斯过程分类器 拉普拉斯近似 支持向量机 变压器故障诊断
在线阅读 下载PDF
基于正交局部保持映射和成本优化的多变量时间序列早期分类模型
2
作者 袁子璇 翁小清 戈宁振 《计算机应用》 CSCD 北大核心 2024年第6期1832-1841,共10页
时间序列早期分类(ETSC)有两个矛盾的目标:早期性和准确率。分类早期性的实现,总是以牺牲它的准确率为代价。现有基于优化的多变量时间序列(MTS)早期分类方法,虽然在成本函数中考虑了错误分类成本和延迟决策成本,却忽视了MTS数据集样本... 时间序列早期分类(ETSC)有两个矛盾的目标:早期性和准确率。分类早期性的实现,总是以牺牲它的准确率为代价。现有基于优化的多变量时间序列(MTS)早期分类方法,虽然在成本函数中考虑了错误分类成本和延迟决策成本,却忽视了MTS数据集样本之间的局部结构对分类性能的影响。针对这个问题,提出一种基于正交局部保持映射(OLPP)和成本优化的MTS早期分类模型(OLPPMOAE)。首先,使用OLPP将MTS样本前缀映射到低维空间,保持原数据集的局部结构;其次,在低维空间训练一组高斯过程(GP)分类器,生成训练集每个时刻的类概率;最后,使用粒子群优化(PSO)算法从这些类概率中学习停止规则中的最优参数。在6个MTS数据集上的实验结果表明,在早期性基本持平的情况下,OLPPMOAE的准确率显著高于基于成本的R1_C_(lr)(stopping Rule and Cost function with regularization term l_(1)and l_(2))模型,平均准确率能够提升11.33%~15.35%,调和均值(HM)能够提升4.71%~9.01%。因此,所提模型能够以较高的准确率尽早地分类MTS。 展开更多
关键词 多变量时间序列 早期分类 正交局部保持映射 成本优化 高斯过程分类器
在线阅读 下载PDF
一种新的雷达HRRP自适应划分角域建模方法 被引量:10
3
作者 陈凤 侯庆禹 +1 位作者 刘宏伟 保铮 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2009年第3期410-417,共8页
基于雷达方位渐变高分辨距离像(HRRP)的连续性,提出了一种自适应递归划分角域的建模方法,利用自适应高斯分类器和高斯过程分类器,从雷达数据中提取连续HRRP序列中包含的非线性结构信息;提出了一种判定角域边界的准则,递归地对雷达数据... 基于雷达方位渐变高分辨距离像(HRRP)的连续性,提出了一种自适应递归划分角域的建模方法,利用自适应高斯分类器和高斯过程分类器,从雷达数据中提取连续HRRP序列中包含的非线性结构信息;提出了一种判定角域边界的准则,递归地对雷达数据自适应划分角域.实测数据仿真试验证明了该方法优于传统的等间隔划分角域建模法. 展开更多
关键词 高分辨距离像 自动目标识别 等间隔划分角域 自适应划分角域 自适应高斯分类器 高斯过程分类器
在线阅读 下载PDF
基于火焰成像和堆栈降噪自编码的燃烧工况识别 被引量:2
4
作者 韩哲哲 段德智 +5 位作者 倪浩伟 李金健 刘煜东 李健 张彪 许传龙 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第3期537-544,共8页
提出一种基于深度神经网络的燃烧监测方法.该方法利用具有深层结构的堆栈降噪自编码(SDAE)提取火焰图像特征,并将其输入到高斯过程分类器(GPC)中,从而识别燃烧工况.针对SDAE训练集中未出现的新燃烧工况,使用少量新工况的标签图像对GPC... 提出一种基于深度神经网络的燃烧监测方法.该方法利用具有深层结构的堆栈降噪自编码(SDAE)提取火焰图像特征,并将其输入到高斯过程分类器(GPC)中,从而识别燃烧工况.针对SDAE训练集中未出现的新燃烧工况,使用少量新工况的标签图像对GPC进行重新训练,即可扩大监测模型的识别范围.在重油燃烧试验装置上开展了试验研究,利用获得的火焰图像对SDAE-GPC网络进行模型训练以及性能测试.结果表明,所提出的监测方法对训练集所包含的燃烧工况具有99.3%的识别精度,对新工况具有98.2%的识别精度,且对图像噪声具有良好的鲁棒性,在燃烧工况识别中具有潜在的应用前景. 展开更多
关键词 燃烧工况识别 火焰图像 堆栈降噪自编码 高斯过程分类器
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部