该文研究了无监督遥感图像分类问题。文中构造了图像的隐马尔可夫随机场模型(HiddenMarkov Random Fleid,HMRF),并且提出了基于该模型的图像分类算法。该文采用有限高斯混合模型(Finite Gaussian Mixture,FGM)描述图像像素灰度的条件概...该文研究了无监督遥感图像分类问题。文中构造了图像的隐马尔可夫随机场模型(HiddenMarkov Random Fleid,HMRF),并且提出了基于该模型的图像分类算法。该文采用有限高斯混合模型(Finite Gaussian Mixture,FGM)描述图像像素灰度的条件概率分布,使用EM(Expectation-Maximization)算法解决从不完整数据中估计概率模型参数问题。针对遥感图像分布的不均匀特性,该文提出的算法没有采用固定的马尔可夫随机场模型参数,而是在递归分类算法中分级地调整模型参数以适应区域的变化。实验结果表明了该文算法的有效性,分类算法处理精度高于C-Means聚类算法.。展开更多
针对传统高斯混合模型(GMM,Gaussian mixture model)难以自动获取类属数和对噪声敏感问题,提出了一种基于可变类空间约束GMM的遥感图像分割方法。首先在构建的GMM中,将像素类属性建模为马尔可夫随机场(MRF,Markov random field),并在此...针对传统高斯混合模型(GMM,Gaussian mixture model)难以自动获取类属数和对噪声敏感问题,提出了一种基于可变类空间约束GMM的遥感图像分割方法。首先在构建的GMM中,将像素类属性建模为马尔可夫随机场(MRF,Markov random field),并在此基础上定义其先验概率;结合邻域像素类属性的后验概率和先验概率,定义噪声平滑因子,以提高算法的抗噪性;在参数求解过程中,分别采用可逆跳变马尔可夫链蒙特卡罗(RJMCMC,reversible jump Markov chain Monte Carlo)方法和最大似然(ML,maximum likelihood)方法估计类属数和模型参数;最后以最小化噪声平滑因子为准则获取最终分割结果。为了验证提出的分割方法,分别对模拟图像和全色遥感图像进行了可变类分割实验。实验结果表明提出方法的可行性和有效性。展开更多
文摘该文研究了无监督遥感图像分类问题。文中构造了图像的隐马尔可夫随机场模型(HiddenMarkov Random Fleid,HMRF),并且提出了基于该模型的图像分类算法。该文采用有限高斯混合模型(Finite Gaussian Mixture,FGM)描述图像像素灰度的条件概率分布,使用EM(Expectation-Maximization)算法解决从不完整数据中估计概率模型参数问题。针对遥感图像分布的不均匀特性,该文提出的算法没有采用固定的马尔可夫随机场模型参数,而是在递归分类算法中分级地调整模型参数以适应区域的变化。实验结果表明了该文算法的有效性,分类算法处理精度高于C-Means聚类算法.。