期刊文献+
共找到243篇文章
< 1 2 13 >
每页显示 20 50 100
基于改进高斯混合模型的变电站负荷聚类算法 被引量:3
1
作者 余浩 高镱滈 +3 位作者 潘险险 徐衍会 李雪松 孙宇航 《全球能源互联网》 CSCD 北大核心 2024年第5期591-601,共11页
针对传统高斯混合模型(Gaussian mixture model,GMM)聚类算法中计算复杂、收敛速度慢和人为确定聚类数目时存在盲目性和主观性等不足,提出了一种基于改进GMM的变电站负荷聚类算法。以传统GMM聚类算法为基础,采用k均值(k-means)算法确定... 针对传统高斯混合模型(Gaussian mixture model,GMM)聚类算法中计算复杂、收敛速度慢和人为确定聚类数目时存在盲目性和主观性等不足,提出了一种基于改进GMM的变电站负荷聚类算法。以传统GMM聚类算法为基础,采用k均值(k-means)算法确定初始聚类中心。减少了GMM聚类算法迭代步骤,提高了输出结果的稳定性。输出不同聚类数下聚类结果的Davies-Bouldin(DB)指标、CalinskiHarabasz(CH)指标和轮廓系数(silhouette coefficient,SC),应用熵权法确定不同评价指标所占权重,构建聚类评价混合指数(cluster evaluation mixed index,CEM)。将聚类评价混合指数最大值对应的聚类个数作为最佳聚类数目,再次输入到改进GMM聚类算法中,得到变电站负荷聚类结果和聚类中心。结果表明,所提方法增强了传统GMM聚类算法的计算速度和稳定性,对变电站负荷具有良好的聚类综合能力,有助于实现聚类结果最优化。 展开更多
关键词 高斯混合模型聚类 负荷分类 聚类算法 聚类评价
在线阅读 下载PDF
基于EM算法的高斯混合模型的织物组织点自动识别
2
作者 刘威 于玲 +2 位作者 王畅巍 邓文韬 邓中民 《现代纺织技术》 北大核心 2024年第2期63-69,共7页
针对现有无监督学习识别机织物组织点的准确率相对较低和不稳定的问题,研究基于EM算法的高斯混合模型对机织物组织点的识别方法。首先对采集的不同织物图像进行预处理及图像矫正,以提高后续的组织点的分割效率;接着利用改进的灰度投影... 针对现有无监督学习识别机织物组织点的准确率相对较低和不稳定的问题,研究基于EM算法的高斯混合模型对机织物组织点的识别方法。首先对采集的不同织物图像进行预处理及图像矫正,以提高后续的组织点的分割效率;接着利用改进的灰度投影法进行织物组织点定位,并提取组织点的灰度共生矩作为纹理特征,通过主成分分析对纹理特征进行降维处理;最后采用2种常见无监督学习与文章所用的识别方法做实验比较,并采用4种评估指标进行评估,得到评估结果。通过计算4种评估指标平均值和标准差进行比较,文章所用识别方法的评估参数平均值都要比其余两种识别算法高。文章所用识别方法能对织物组织点进行自动识别,并且识别的准确率相比于其余两种识别算法得到了有效地提升。 展开更多
关键词 组织点分割 自动识别 K-mean聚类 模糊C均值算法 高斯混合模型
在线阅读 下载PDF
一种基于高斯混合模型的距离图像分割算法 被引量:55
3
作者 向日华 王润生 《软件学报》 EI CSCD 北大核心 2003年第7期1250-1257,共8页
提出了一种基于表面法向的高斯混合模型的距离图像分割算法.它充分利用了表面法向高斯混合模型的物理含义,使数据聚类的次数减少,并利用Expectation-Maximization(EM)算法估计出的模型参数计算模型的后验概率实现了自动模型选择.算法针... 提出了一种基于表面法向的高斯混合模型的距离图像分割算法.它充分利用了表面法向高斯混合模型的物理含义,使数据聚类的次数减少,并利用Expectation-Maximization(EM)算法估计出的模型参数计算模型的后验概率实现了自动模型选择.算法针对两种距离相机的60幅真实距离图像进行了实验.将实验结果与几个流行的分割算法进行了客观比较. 展开更多
关键词 距离图像分割 高斯混合模型iem算法 贝叶斯因子
在线阅读 下载PDF
基于高斯混合模型的非视距定位算法 被引量:25
4
作者 崔玮 吴成东 +2 位作者 张云洲 贾子熙 程龙 《通信学报》 EI CSCD 北大核心 2014年第1期99-106,共8页
针对无线传感器网络室内节点定位,在分析定位误差模型的基础上,结合高斯混合模型提出了一种无需先验知识的节点定位算法。利用高斯混合模型,对含有非视距误差的距离测量信息进行训练,以获得接近真实值的距离估计值。为取得高精度的定位... 针对无线传感器网络室内节点定位,在分析定位误差模型的基础上,结合高斯混合模型提出了一种无需先验知识的节点定位算法。利用高斯混合模型,对含有非视距误差的距离测量信息进行训练,以获得接近真实值的距离估计值。为取得高精度的定位效果,采用粒子群算法对期望最大化(EM)算法进行优化。同时结合优选残差加权算法对所得的距离值进行定位估计,得出目标节点坐标估计值。仿真实验结果证实了算法的有效性。 展开更多
关键词 非视距 RSSI 残差加权算法 粒子群优化算法 高斯混合模型
在线阅读 下载PDF
一种快速、鲁棒的有限高斯混合模型聚类算法 被引量:15
5
作者 胡庆辉 丁立新 +1 位作者 陆玉靖 何进荣 《计算机科学》 CSCD 北大核心 2013年第8期191-195,共5页
有限混合模型聚类是一种基于概率模型的有效聚类方法。针对高斯混合模型的聚类算法,分别对模型的成分混合系数及样本所属成分的概率系数施加熵惩罚算子,实现对模型成分数的两级控制,快速消除无效成分,使算法能在很少的迭代次数内收敛到... 有限混合模型聚类是一种基于概率模型的有效聚类方法。针对高斯混合模型的聚类算法,分别对模型的成分混合系数及样本所属成分的概率系数施加熵惩罚算子,实现对模型成分数的两级控制,快速消除无效成分,使算法能在很少的迭代次数内收敛到确定解。传统算法对初始值(成分数目c需事先指定)的设置非常敏感,容易导致EM算法陷入局部最优解或收敛到解空间的边界,而文中的算法对初始值的设定没有特殊的要求,实验证明其具有很好的鲁棒性。 展开更多
关键词 高斯混合模型 聚类 信息熵 EM算法
在线阅读 下载PDF
一种基于高斯混合模型的改进EM算法研究 被引量:11
6
作者 宋磊 郑宝忠 +5 位作者 张莹 闫丽 卫宏 刘建鹏 李涛 杨恒 《应用光学》 CAS CSCD 北大核心 2013年第6期985-989,共5页
针对传统EM算法存在估计参数不具有最优性,以及在参数估计中需要人工参与等问题,提出一种基于高斯混合模型的改进EM算法。采用无人工参与的无监督思想,获取高斯混合模型对直方图拟合的最优参数组合。实验表明,该算法不仅能够快速地估计... 针对传统EM算法存在估计参数不具有最优性,以及在参数估计中需要人工参与等问题,提出一种基于高斯混合模型的改进EM算法。采用无人工参与的无监督思想,获取高斯混合模型对直方图拟合的最优参数组合。实验表明,该算法不仅能够快速地估计模型参量,而且能够给出最优参数,并在图像增强中使细节更明显,对比度更适中。 展开更多
关键词 EM算法 高斯混合模型 图像增强
在线阅读 下载PDF
自适应高斯混合模型球场检测算法及其在体育视频分析中的应用 被引量:18
7
作者 刘扬 黄庆明 +1 位作者 高文 叶齐祥 《计算机研究与发展》 EI CSCD 北大核心 2006年第7期1207-1215,共9页
球场检测在体育视频内容分析中有着重要作用.为了克服由于不同光照、不同相机、不同拍摄角度造成球场颜色的非均一性问题,提出了一种基于自适应高斯混合模型(adaptiveGaussianmixturemodel,GMM)的球场检测算法.该算法首先从视频中任意... 球场检测在体育视频内容分析中有着重要作用.为了克服由于不同光照、不同相机、不同拍摄角度造成球场颜色的非均一性问题,提出了一种基于自适应高斯混合模型(adaptiveGaussianmixturemodel,GMM)的球场检测算法.该算法首先从视频中任意抽取一些图像,并自动分析这些图像的主要颜色,从中找到主颜色的近似分布,然后,利用GMM拟合主要颜色分布.为提高模型的适应能力,在球场检测过程中,利用当前GMM球场检测结果和增量期望最大(incrementalexpectationmaximum,IEM)算法不断更新模型参数,从而得到更加准确的参数估计,并用于后续图像中球场和非球场像素进行分类.最后,根据球场区域在图像中的分布,对足球比赛场景进行分类.实验证明,提出的算法具有良好的性能. 展开更多
关键词 球场检测 自适应高斯混合模型 增量期望最大算法 足球视频 场景分类
在线阅读 下载PDF
基于分层高斯混合模型的半监督学习算法 被引量:23
8
作者 孙广玲 唐降龙 《计算机研究与发展》 EI CSCD 北大核心 2004年第1期156-161,共6页
提出了一种基于分层高斯混合模型的半监督学习算法 半监督学习算法的学习样本包括已标记类别样本和未标记类别学习样本 如用高斯混合模型拟合每个类别已标记学习样本的概率分布 ,进而用高斯数为类别数的分层高斯混合模型拟合全部 (已... 提出了一种基于分层高斯混合模型的半监督学习算法 半监督学习算法的学习样本包括已标记类别样本和未标记类别学习样本 如用高斯混合模型拟合每个类别已标记学习样本的概率分布 ,进而用高斯数为类别数的分层高斯混合模型拟合全部 (已标记和未标记 )学习样本的分布 ,则形成为一个基于分层的高斯混合模型的半监督学习问题 基于EM算法 ,首先利用每个类别已标记样本学习高斯混合模型 ,然后以该模型参数和已标记样本的频率分布作为分层高斯混合模型参数的初值 ,给出了基于分层高斯混合模型的半监督学习算法 以银行票据印刷体数字识别做实验 ,实验结果表明 。 展开更多
关键词 半监督学习 高斯混合模型 分层高斯混合模型 EM算法
在线阅读 下载PDF
一种基于混合高斯模型的多目标进化算法 被引量:30
9
作者 周爱民 张青富 张桂戌 《软件学报》 EI CSCD 北大核心 2014年第5期913-928,共16页
目前,大多数多目标进化算法采用为单目标优化所设计的重组算子.通过证明或实验分析了几个典型的单目标优化重组算子并不适合某些多目标优化问题.提出了基于分解技术和混合高斯模型的多目标优化算法(multiobjective evolutionary algorit... 目前,大多数多目标进化算法采用为单目标优化所设计的重组算子.通过证明或实验分析了几个典型的单目标优化重组算子并不适合某些多目标优化问题.提出了基于分解技术和混合高斯模型的多目标优化算法(multiobjective evolutionary algorithm based on decomposition and mixture Gaussian models,简称MOEA/D-MG).该算法首先采用一个改进的混合高斯模型对群体建模并采样产生新个体,然后利用一个贪婪策略来更新群体.针对具有复杂Pareto前沿的多目标优化问题的测试结果表明,对给定的大多数测试题,该算法具有良好的效果. 展开更多
关键词 多目标优化 进化算法 MOEA D 混合高斯概率模型
在线阅读 下载PDF
基于鲁棒高斯混合模型的加速EM算法研究 被引量:7
10
作者 邢长征 赵全颖 +1 位作者 王星 王伟 《计算机应用研究》 CSCD 北大核心 2017年第4期1042-1046,共5页
针对传统鲁棒高斯混合模型EM算法存在模型成分参数难以精确获取最优解以及收敛速度随样本数量的增加而快速降低等问题,提出了一种基于鲁棒高斯混合模型的加速EM算法。该算法采用隐含参量信息熵原理对高斯模型分量个数进行挑选,以及使用A... 针对传统鲁棒高斯混合模型EM算法存在模型成分参数难以精确获取最优解以及收敛速度随样本数量的增加而快速降低等问题,提出了一种基于鲁棒高斯混合模型的加速EM算法。该算法采用隐含参量信息熵原理对高斯模型分量个数进行挑选,以及使用Aitken加速方法减少算法的迭代次数,当接近最优解时,EM步长的变化极为缓慢,这时使用Broyden对称秩1校正公式进行校正,使算法快速收敛,从而能够在很少的迭代次数内精确获取高斯混合模型的模型成分数。该算法通过与传统鲁棒EM算法和无监督的EM算法的聚类结果进行比较,实验证明该算法对初始值的设定并不敏感(成分数c无须预先设定),并且能够降低算法运算时间,提高聚类模型成分数(类簇)的正确率。 展开更多
关键词 EM算法 鲁棒 高斯混合模型 模型成分数 信息熵原理
在线阅读 下载PDF
波形特征的高斯混合模型锋电位分类算法 被引量:4
11
作者 万红 张超 +1 位作者 刘新玉 尚志刚 《中国生物医学工程学报》 CAS CSCD 北大核心 2016年第4期402-410,共9页
锋电位分类是进行大脑信息处理机制研究的基本步骤之一。针对锋电位信号的复杂性和非平稳性,从统计聚类的角度出发,采用高斯混合模型描述锋电位信号的概率密度函数,提出了一种新的基于波形变化率特征和高斯混合模型聚类的锋电位分类方... 锋电位分类是进行大脑信息处理机制研究的基本步骤之一。针对锋电位信号的复杂性和非平稳性,从统计聚类的角度出发,采用高斯混合模型描述锋电位信号的概率密度函数,提出了一种新的基于波形变化率特征和高斯混合模型聚类的锋电位分类方法。首先计算锋电位的波形变化率,然后利用最大差异方法获得锋电位波形的低维特征,最后采用高斯混合模型算法对特征进行聚类,实现锋电位分类。采用开放的仿真数据分析了该算法的分类精度和可行性,然后分别利用来自5只大鼠和1只恒河猴初级视觉皮层的实测数据验证了该算法的实用性,并与主成分分析特征的高斯混合模型聚类、幅值特征的高斯混合模型聚类和变化率特征的k均值聚类等3种方法进行了比较。仿真实验中,在噪声水平为0.05、0.10、0.15、0.20时,误分率分别为1.18%±1.18%、1.41%±1.06%、2.27%±1.51%、2.98%±2.06%,低于其他3种方法;实测实验中,恒河猴数据的J3准则值为13.50±5.26,大鼠数据的J3准则值为26.43±10.46。与其他3种方法相比,平均J3准则值较大,且显著高于幅值特征的高斯混合模型聚类算法。所提出的方法表现出较高的分类精度和较好的类可分性,为实现神经元锋电位的可靠分类提供了一种有效的手段。 展开更多
关键词 锋电位分类 波形变化率 最大差异算法 高斯混合模型
在线阅读 下载PDF
基于高斯混合模型的无线局域网定位算法 被引量:13
12
作者 程远国 耿伯英 《计算机工程》 CAS CSCD 北大核心 2009年第4期25-27,共3页
目标定位是无线局域网提供位置服务的基础。该文围绕无线局域网目标定位中的定位精度和实时性2个QoS指标,对基于RSSI的定位技术进行研究,提出一种基于高斯混合模型的无线局域网定位算法。该算法由离线训练和在线定位2个阶段组成,采用GMM... 目标定位是无线局域网提供位置服务的基础。该文围绕无线局域网目标定位中的定位精度和实时性2个QoS指标,对基于RSSI的定位技术进行研究,提出一种基于高斯混合模型的无线局域网定位算法。该算法由离线训练和在线定位2个阶段组成,采用GMM对RSSI进行建模,降低了系统定位误差,并减少了定位阶段的运算量,提高了定位的实时性。仿真实验结果表明,该算法具有较好的定位精度和实时性。 展开更多
关键词 无线局域网 接收信号强度指示 高斯混合模型 定位算法
在线阅读 下载PDF
融合混合高斯模型的改进的Vibe算法 被引量:12
13
作者 张红瑞 马永杰 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第3期361-366,共6页
针对经典Vibe算法在运动目标检测时存在鬼影、阴影和噪声干扰的问题,提出了一种融合混合高斯模型的改进的Vibe算法。在背景初始化阶段,采用五帧差分算法与八邻域的像素值填充获得的真实背景并且消除鬼影现象;通过混合高斯模型权值与Vib... 针对经典Vibe算法在运动目标检测时存在鬼影、阴影和噪声干扰的问题,提出了一种融合混合高斯模型的改进的Vibe算法。在背景初始化阶段,采用五帧差分算法与八邻域的像素值填充获得的真实背景并且消除鬼影现象;通过混合高斯模型权值与Vibe随机取样概率相结合进行背景更新,将得到的运动目标进行形态学处理,使运动目标更加清晰;最后,在YCb Cr颜色空间进行阴影消除。实验结果表明,改进后的Vibe算法不仅能够有效地去除鬼影,并且在消除阴影与噪声方面取得了良好的效果。 展开更多
关键词 Vibe算法 混合高斯模型 鬼影消除 五帧差分算法
在线阅读 下载PDF
基于快速求解高斯混合模型的流量聚类算法 被引量:10
14
作者 党小超 毛鹏鑫 郝占军 《计算机工程与应用》 CSCD 北大核心 2015年第8期96-101,共6页
基于聚类算法可以对多个属性聚类的特点,提出一种基于快速求解高斯混合模型的聚类算法,用于研究网络流量的分类,使其达到更佳的聚类效果。通过与其他算法比较,讨论了该种方法在流量聚类中的适用性。仿真结果表明,该方法聚类精度高,经过... 基于聚类算法可以对多个属性聚类的特点,提出一种基于快速求解高斯混合模型的聚类算法,用于研究网络流量的分类,使其达到更佳的聚类效果。通过与其他算法比较,讨论了该种方法在流量聚类中的适用性。仿真结果表明,该方法聚类精度高,经过初始聚类中心后的EM算法用于求解GMM有较高的估算准确性,有效地提高了EM算法的收敛速度。 展开更多
关键词 K-MEANS算法 参数初始化 高斯混合模型 流量聚类
在线阅读 下载PDF
基于协方差的高斯混合模型参数学习算法 被引量:4
15
作者 廖晓锋 范修斌 姜青山 《计算机科学》 CSCD 北大核心 2013年第11A期77-81,共5页
对混合高斯模型参数估计问题的算法通常是基于期望最大(Expectation Maximization)给出的。在混合高斯模型的因素协方差矩阵已知、因素各分量独立的前提下,给出了基于协方差矩阵的机器学习算法,简称CVB(Covariance Based)算法,并进行了... 对混合高斯模型参数估计问题的算法通常是基于期望最大(Expectation Maximization)给出的。在混合高斯模型的因素协方差矩阵已知、因素各分量独立的前提下,给出了基于协方差矩阵的机器学习算法,简称CVB(Covariance Based)算法,并进行了一定的数学分析。最后给出了与期望最大算法的实验结果比较。实验结果表明,在该条件下,基于协方差的算法优于期望最大算法。 展开更多
关键词 混合高斯模型 期望最大化 协方差 CVB算法
在线阅读 下载PDF
基于混合高斯模型与码本算法的前景目标检测 被引量:4
16
作者 叶勇 管业鹏 李晶晶 《计算机工程》 CAS CSCD 2012年第5期1-4,共4页
提出一种基于混合高斯模型(GMM)与码本算法的前景目标检测方法。利用GMM进行背景图像建模并初步提取前景对象,对背景图像进行码本学习,将码本建模得到的前景对象与GMM得到的前景对象相融合,根据前后2次帧间差分得到前景对象的比例关系,... 提出一种基于混合高斯模型(GMM)与码本算法的前景目标检测方法。利用GMM进行背景图像建模并初步提取前景对象,对背景图像进行码本学习,将码本建模得到的前景对象与GMM得到的前景对象相融合,根据前后2次帧间差分得到前景对象的比例关系,自适应地更新高斯参数和扩展码字,得到前景对象目标。实验结果表明,该方法实时性好,可消除视频序列中的阴影和鬼影,提取完整的前景对象。 展开更多
关键词 前景检测 阴影消除 混合高斯模型 码本算法 帧间差分
在线阅读 下载PDF
基于高斯混合模型的视频对象分割算法 被引量:2
17
作者 李小和 张太镒 +1 位作者 周亚同 沈晓东 《西安交通大学学报》 EI CAS CSCD 北大核心 2006年第6期724-728,共5页
针对应用高斯混合模型(GMM)进行视频建模与分割时的模型选择及参数估计初值选择的难点,提出了一种基于GMM的视频对象分割算法.首先进行特征提取,在特征矢量中引入加权运动信息,可根据不同需要选择合理的加权系数,然后通过分割投影进行... 针对应用高斯混合模型(GMM)进行视频建模与分割时的模型选择及参数估计初值选择的难点,提出了一种基于GMM的视频对象分割算法.首先进行特征提取,在特征矢量中引入加权运动信息,可根据不同需要选择合理的加权系数,然后通过分割投影进行模型选择及期望最大化(EM)算法的参数初始化并估计参数,这种初值选择方案使得EM算法的初值和真实值较接近,加快了迭代运算的收敛速度,从而提高了视频对象的分割速度,最后对特征矢量进行聚类分割.仿真实验表明,在保持良好分割效果的同时,所提算法的运算速度约为常规方案的76%,并且具有良好的稳定性. 展开更多
关键词 视频对象分割 高斯混合模型 期望最大化算法
在线阅读 下载PDF
一种快速、贪心的高斯混合模型EM算法研究 被引量:3
18
作者 邢长征 苑聪 《计算机工程与应用》 CSCD 北大核心 2015年第20期111-115,共5页
针对传统EM算法存在初始模型成分数目需要预先指定以及收敛速度随样本数目的增长而急剧减慢等问题,提出了一种快速、贪心的高斯混合模型EM算法。该算法采用贪心的策略以及对隐含参数设置适当阈值的方法,使算法能够快速收敛,从而在很少... 针对传统EM算法存在初始模型成分数目需要预先指定以及收敛速度随样本数目的增长而急剧减慢等问题,提出了一种快速、贪心的高斯混合模型EM算法。该算法采用贪心的策略以及对隐含参数设置适当阈值的方法,使算法能够快速收敛,从而在很少的迭代次数内获取高斯混合模型的模型成分数。该算法通过与传统EM算法、无监督EM算法和鲁棒EM算法的聚类结果进行比较,实验结果证明该算法具有很强的鲁棒性,并且能够提高算法的效率以及模型成分数的准确性。 展开更多
关键词 贪心 高斯混合模型 隐含参量 最大期望(EM)算法
在线阅读 下载PDF
基于混合高斯模型的配电网负荷伪量测权重优化算法 被引量:6
19
作者 申定辉 于晓蕾 吴丹 《广东电力》 2016年第5期86-91,123,共7页
提出一种基于高斯混合模型(Gaussian mixture model,GMM)的配电网负荷量测权重优化算法,包括对GMM参数的优化和权重确定。首先采用引力搜索算法(gravitational search algorithm,GSA)对数据的最佳聚类个数进行判断,利用K-means算法获取... 提出一种基于高斯混合模型(Gaussian mixture model,GMM)的配电网负荷量测权重优化算法,包括对GMM参数的优化和权重确定。首先采用引力搜索算法(gravitational search algorithm,GSA)对数据的最佳聚类个数进行判断,利用K-means算法获取数据的初始聚类中心、方差和混合权重;然后通过组合马尔科夫链蒙特卡洛期望最大化(Markov chain Monte Carlo-expectation maximum,MCMC-EM)算法对GMM的参数进行估计;最后根据优化的GMM,提出负荷伪量测权重优化方法,确定负荷伪量测的权重。以改进IEEE-12节点系统对所提方法进行验证,结果表明其合理、有效。 展开更多
关键词 配电网 状态估计 伪量测权重 高斯混合模型 组合马尔科夫链蒙特卡洛期望最大化算法
在线阅读 下载PDF
融合密度峰值的高斯混合模型聚类算法 被引量:11
20
作者 陶志勇 刘晓芳 王和章 《计算机应用》 CSCD 北大核心 2018年第12期3433-3437,3443,共6页
针对高斯混合模型(GMM)聚类算法对初始值敏感且容易陷入局部极小值的问题,利用密度峰值(DP)算法全局搜索能力强的优势,对GMM算法的初始聚类中心进行优化,提出了一种融合DP的GMM聚类算法(DPGMMC)。首先,基于DP算法寻找聚类中心,得到混合... 针对高斯混合模型(GMM)聚类算法对初始值敏感且容易陷入局部极小值的问题,利用密度峰值(DP)算法全局搜索能力强的优势,对GMM算法的初始聚类中心进行优化,提出了一种融合DP的GMM聚类算法(DPGMMC)。首先,基于DP算法寻找聚类中心,得到混合模型的初始参数;其次,采用最大期望(EM)算法迭代估计混合模型的参数;最后,根据贝叶斯后验概率准则实现数据点的聚类。在Iris数据集下,DP-GMMC聚类准确率可达到96. 67%,与传统GMM算法相比提高了33. 6个百分点,解决了对初始聚类中心依赖的问题。实验结果表明,DP-GMMC对低维数据集有较好的聚类效果。 展开更多
关键词 聚类 高斯混合模型 最大期望算法 密度峰值
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部