期刊文献+
共找到126篇文章
< 1 2 7 >
每页显示 20 50 100
基于高斯混合模型双向聚类重采样和随机森林构建DLBCL早期复发预测模型
1
作者 王俊霞 张岩波 +9 位作者 余红梅 曹红艳 周洁 乔宇 张高源 于凯 王雪嫚 郭玉娇 赵志强 罗艳虹 《中国卫生统计》 北大核心 2025年第1期7-11,17,共6页
目的应用一种可以同时解决少数类和多数类类间和类内不平衡问题的类别不平衡处理方法,并将其与随机森林(random forest,RF)分类器结合实现对弥漫大B细胞淋巴瘤(diffuse large B-cell lymphoma,DLBCL)患者早期复发的预测,为DLBLC患者的... 目的应用一种可以同时解决少数类和多数类类间和类内不平衡问题的类别不平衡处理方法,并将其与随机森林(random forest,RF)分类器结合实现对弥漫大B细胞淋巴瘤(diffuse large B-cell lymphoma,DLBCL)患者早期复发的预测,为DLBLC患者的治疗提供参考。方法首先使用一种基于高斯混合模型双向聚类重采样的类别不平衡处理方法(Gaussian mixture model,GMM-GMM)处理数据,并与随机过采样(random over sampling,ROS)、合成少数类过采样技术(synthetic minority over-sampling technique,SMOTE)、Borderline-1 SMOTE、Borderline-2 SMOTE、GMM上采样、GMM下采样、SMOTE+RUS、SMOTE+GMM和GMM+RUS进行比较,然后以RF作为分类器验证10种类别不平衡方法的性能,之后为验证RF的性能,在处理后的数据集上使用logistic回归和决策树(decision tree,DT)作为对照,最后从区分度和校准度两方面对模型进行评价。结果在本文所有模型中,采用GMM-GMM的RF模型取得了相对最优的分类性能(accuracy=0.79,AUC=0.87,sensitivity=0.71,specificity=0.87,G-means=0.79,MSE=0.21)。结论GMM-GMM优于其他传统的重采样方法,结合RF用于DLBCL患者早期复发的预测取得了相对较好的分类结果,可以很好地实现对DLBCL患者早期复发的预测。 展开更多
关键词 别不平衡 高斯混合模型聚类重采样 随机森林 复发预测 弥漫大B细胞淋巴瘤
在线阅读 下载PDF
基于改进高斯混合模型的光伏短时波动游程聚类
2
作者 彭文静 郑迪 +2 位作者 蔡慧 邵海明 王家福 《电子测量技术》 北大核心 2025年第7期126-134,共9页
针对大规模光伏发电短时波动性对电能准确计量的挑战,本文提出一种基于改进高斯混合模型的光伏短时波动信号游程聚类分析方法。首先,从游程理论出发分析了光伏输出的短时波动信号特征;其次,针对光伏短时波动信号分解得到游程过多、难以... 针对大规模光伏发电短时波动性对电能准确计量的挑战,本文提出一种基于改进高斯混合模型的光伏短时波动信号游程聚类分析方法。首先,从游程理论出发分析了光伏输出的短时波动信号特征;其次,针对光伏短时波动信号分解得到游程过多、难以提取典型波动特征的问题,采用基于改进高斯混合模型聚类方法对海量游程进行聚类;进一步提出了主客观融合的聚类结果评价方法。最后,对光伏电站现场录波数据的仿真结果表明,相较于其他方法,所提方法聚类结果评分在各方面有1.1%~61.4%的提升;在不同噪声及异常值水平下所提方法也可以维持较好的聚类效果,复合指标评分下降程度小于其他算法0.92%~18.24%。所提方法通过深度学习技术和贝叶斯信息准则实现了高斯混合模型的自适应聚类,提高了对含噪声和异常值数据的适应能力和稳定性,能够实现光伏电站时波动信号游程的合理聚类。 展开更多
关键词 光伏短时波动信号 游程分析 改进高斯混合模型 游程 贝叶斯信息准则
在线阅读 下载PDF
基于粒球邻域粗糙集的三支高斯混合聚类
3
作者 邵春梅 万仁霞 +1 位作者 苗夺谦 赵杰 《郑州大学学报(理学版)》 北大核心 2025年第6期16-23,共8页
为了解决高维数据集中冗余信息影响三支高斯混合模型聚类效果的问题,将粒球邻域粗糙集的理论融入三支高斯混合聚类模型中,提出一种基于粒球邻域粗糙集的三支高斯混合聚类模型。首先,使用k-means聚类生成满足纯度要求的粒球集,再在粒球... 为了解决高维数据集中冗余信息影响三支高斯混合模型聚类效果的问题,将粒球邻域粗糙集的理论融入三支高斯混合聚类模型中,提出一种基于粒球邻域粗糙集的三支高斯混合聚类模型。首先,使用k-means聚类生成满足纯度要求的粒球集,再在粒球生成正域不变约束下进行属性约简,提取关键属性。其次,使用三支高斯混合模型对约简后的数据进行聚类,将对象划分到类簇的核心域或边界域。在7个UCI公共数据集上的对比实验结果表明,所提模型不仅继承了三支高斯混合聚类模型优越的聚类性能,具有更高的准确率、轮廓系数和更低的戴维森堡丁指数,其对类簇边界部分的刻画也更加准确。此外,由于所提模型对高维空间进行了属性约简处理,使得其具有更小的时间复杂度。 展开更多
关键词 高维数据 三支高斯混合模型 粒球邻域粗糙集 正域 属性约简
在线阅读 下载PDF
基于高斯混合模型的分布因子聚类方法 被引量:4
4
作者 朱映秋 黄丹阳 张波 《统计研究》 CSSCI 北大核心 2024年第6期147-160,共14页
随着信息技术的发展,人类社会产生的数据规模越来越庞大、形式越来越复杂,对聚类分析形成了巨大挑战。在越来越多的应用场景中,观测数据具有相互关联、层次嵌套的结构,使传统聚类方法难以直接适用。通常的解决方案是采用特征工程方法将... 随着信息技术的发展,人类社会产生的数据规模越来越庞大、形式越来越复杂,对聚类分析形成了巨大挑战。在越来越多的应用场景中,观测数据具有相互关联、层次嵌套的结构,使传统聚类方法难以直接适用。通常的解决方案是采用特征工程方法将观测信息压缩为低维特征向量进行聚类,但这将带来不可避免的信息损失。为充分利用观测数据,本文以分布函数表示聚类对象,大幅降低信息损失,进而提出基于高斯混合模型的分布因子模型。该模型将聚类对象的观测数据分解为两部分,一是以高斯成分表示的公共因子,反映数据中具有共性的典型模式;二是载荷矩阵,矩阵中每个载荷向量反映个体的异质性特征。估计得到载荷向量后即可对不同个体实现聚类划分。本文提出的方法具有优良的统计学效率,能够证明在一定假设条件下聚类误差率能够随着观测个体数目的发散而趋近于0。基于模拟数据和股票收益、大气污染实际数据的实验表明,该方法能够区分具有不同特征模式的个体,解决多维数据的分布函数聚类问题,并为金融风险管理、空气质量的差异化治理等现实问题提供决策支持。 展开更多
关键词 分布函数 高斯混合模型 复杂数据
在线阅读 下载PDF
基于高斯混合模型聚类的双馈风电场动态等值建模方法 被引量:6
5
作者 邓俊 张阳 +3 位作者 李怡然 夏楠 戚正浩 高桐 《太阳能学报》 EI CAS CSCD 北大核心 2024年第1期342-350,共9页
针对风电场动态运行条件下等值建模精度偏低、聚类依据不足的难题,提出一种基于高斯混合模型聚类思想的风电场等值建模方法。首先,分析单台双馈感应式风力发电机在低电压穿越期间的动态响应特性,根据响应特性的集群特征构建聚类指标。然... 针对风电场动态运行条件下等值建模精度偏低、聚类依据不足的难题,提出一种基于高斯混合模型聚类思想的风电场等值建模方法。首先,分析单台双馈感应式风力发电机在低电压穿越期间的动态响应特性,根据响应特性的集群特征构建聚类指标。然后,提出基于高斯混合模型动态初步聚类、优化聚类数目的两阶段等值建模方法,推导出赤池信息和贝叶斯信息准则下聚类数目的寻优算法。以典型中等规模风电场为例,在Matlab/Simulink平台进行不同故障穿越条件的仿真测试,结果表明所提风电场等值建模方法聚类有效、精度高。 展开更多
关键词 风电场 低电压穿越 风速 双馈风力发电机 高斯混合模型 等值建模
在线阅读 下载PDF
基于改进高斯混合模型的变电站负荷聚类算法 被引量:3
6
作者 余浩 高镱滈 +3 位作者 潘险险 徐衍会 李雪松 孙宇航 《全球能源互联网》 CSCD 北大核心 2024年第5期591-601,共11页
针对传统高斯混合模型(Gaussian mixture model,GMM)聚类算法中计算复杂、收敛速度慢和人为确定聚类数目时存在盲目性和主观性等不足,提出了一种基于改进GMM的变电站负荷聚类算法。以传统GMM聚类算法为基础,采用k均值(k-means)算法确定... 针对传统高斯混合模型(Gaussian mixture model,GMM)聚类算法中计算复杂、收敛速度慢和人为确定聚类数目时存在盲目性和主观性等不足,提出了一种基于改进GMM的变电站负荷聚类算法。以传统GMM聚类算法为基础,采用k均值(k-means)算法确定初始聚类中心。减少了GMM聚类算法迭代步骤,提高了输出结果的稳定性。输出不同聚类数下聚类结果的Davies-Bouldin(DB)指标、CalinskiHarabasz(CH)指标和轮廓系数(silhouette coefficient,SC),应用熵权法确定不同评价指标所占权重,构建聚类评价混合指数(cluster evaluation mixed index,CEM)。将聚类评价混合指数最大值对应的聚类个数作为最佳聚类数目,再次输入到改进GMM聚类算法中,得到变电站负荷聚类结果和聚类中心。结果表明,所提方法增强了传统GMM聚类算法的计算速度和稳定性,对变电站负荷具有良好的聚类综合能力,有助于实现聚类结果最优化。 展开更多
关键词 高斯混合模型 负荷分 算法 评价
在线阅读 下载PDF
基于2dSVD和高斯混合模型的多变量时间序列聚类 被引量:1
7
作者 杨秋颖 翁小清 《计算机应用与软件》 北大核心 2024年第3期283-289,327,共8页
针对多变量时间序列(MTS)存在时间和变量两个维度,以及传统主成分分析(PCA)方法在MTS数据表示上的局限性,提出一种基于二维奇异值分解(2dSVD)和高斯混合模型(GMM)的MTS聚类算法。该文计算MTS的行-行和列-列协方差矩阵的特征向量,从时间... 针对多变量时间序列(MTS)存在时间和变量两个维度,以及传统主成分分析(PCA)方法在MTS数据表示上的局限性,提出一种基于二维奇异值分解(2dSVD)和高斯混合模型(GMM)的MTS聚类算法。该文计算MTS的行-行和列-列协方差矩阵的特征向量,从时间和变量两个维度提取特征矩阵;用GMM从概率分布角度对特征矩阵进行聚类。数值实验结果表明,该方法对多变量时间序列具有更好的聚类效果。 展开更多
关键词 二维奇异值分解 高斯混合模型 多变量时间序列
在线阅读 下载PDF
个体行为数据聚类的双重混合高斯模型算法 被引量:3
8
作者 戴涛 骆科东 李春平 《计算机应用》 CSCD 北大核心 2004年第8期44-46,49,共4页
传统的基于概率的混合模型算法可以很好地解决个体行为数据的聚类问题 ,但是对于具有“多峰值”特征的行为数据则需要更精巧的方法。提出双重混合高斯模型算法 (DualMGM )扩展了普通混合模型的概念 ,解决了多峰值特征的个体行为数据的... 传统的基于概率的混合模型算法可以很好地解决个体行为数据的聚类问题 ,但是对于具有“多峰值”特征的行为数据则需要更精巧的方法。提出双重混合高斯模型算法 (DualMGM )扩展了普通混合模型的概念 ,解决了多峰值特征的个体行为数据的聚类问题。DualMGM的算法复杂度是随数据量线性增长的 ,具有很好的可扩展性。 展开更多
关键词 个体行为数据 多峰值 混合高斯模型(DualMGM) EM算法
在线阅读 下载PDF
一种快速、鲁棒的有限高斯混合模型聚类算法 被引量:15
9
作者 胡庆辉 丁立新 +1 位作者 陆玉靖 何进荣 《计算机科学》 CSCD 北大核心 2013年第8期191-195,共5页
有限混合模型聚类是一种基于概率模型的有效聚类方法。针对高斯混合模型的聚类算法,分别对模型的成分混合系数及样本所属成分的概率系数施加熵惩罚算子,实现对模型成分数的两级控制,快速消除无效成分,使算法能在很少的迭代次数内收敛到... 有限混合模型聚类是一种基于概率模型的有效聚类方法。针对高斯混合模型的聚类算法,分别对模型的成分混合系数及样本所属成分的概率系数施加熵惩罚算子,实现对模型成分数的两级控制,快速消除无效成分,使算法能在很少的迭代次数内收敛到确定解。传统算法对初始值(成分数目c需事先指定)的设置非常敏感,容易导致EM算法陷入局部最优解或收敛到解空间的边界,而文中的算法对初始值的设定没有特殊的要求,实验证明其具有很好的鲁棒性。 展开更多
关键词 高斯混合模型 信息熵 EM算法
在线阅读 下载PDF
一种基于高斯混合模型的无监督粗糙聚类方法 被引量:9
10
作者 何明 冯博琴 +1 位作者 马兆丰 傅向华 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2006年第2期256-259,322,共5页
针对数据统计分布的随机性和复杂性,从统计聚类的角度出发,采用高斯混合模型来描述整个数据的概率密度函数,提出了一种基于高斯混合模型的粗糙聚类分析方法.该方法首先利用粗糙集理论的不可区分关系性质以及生成的逻辑规则来设定EM算法... 针对数据统计分布的随机性和复杂性,从统计聚类的角度出发,采用高斯混合模型来描述整个数据的概率密度函数,提出了一种基于高斯混合模型的粗糙聚类分析方法.该方法首先利用粗糙集理论的不可区分关系性质以及生成的逻辑规则来设定EM算法的初始近似参数,然后通过Expectation-M axim ization(EM)算法估计各分量概率密度分布的最大似然参数集,最后通过密度分布概率大小来确定类别的归属.与传统的k-m eans聚类算法的试验结果比较表明,该方法是有效的,并且具有较高的聚类精度,用规则集来描述聚类的结果具有可解释性和合理性. 展开更多
关键词 高斯混合模型 粗糙集 EM算法
在线阅读 下载PDF
融合K-means与高斯混合模型的驾驶风格聚类研究 被引量:17
11
作者 刘通 付锐 +1 位作者 张名芳 田顺 《中国安全科学学报》 CAS CSCD 北大核心 2019年第12期40-45,共6页
为研究驾驶员的跟车特性,探究驾驶员风格划分方法,采集50名驾驶员的实车试验数据,选取平均跟车时距和平均制动时距为二维向量,建立基于K-means聚类结果的高斯混合模型(GMM)并分析不同风格驾驶员的聚类结果。研究表明:样本数据聚为3类时... 为研究驾驶员的跟车特性,探究驾驶员风格划分方法,采集50名驾驶员的实车试验数据,选取平均跟车时距和平均制动时距为二维向量,建立基于K-means聚类结果的高斯混合模型(GMM)并分析不同风格驾驶员的聚类结果。研究表明:样本数据聚为3类时的平均轮廓系数为0. 45,将驾驶员划分为冒进型、平稳型、保守型3类时聚类效果较好;冒进型驾驶员倾向于选择较小的跟车时距和制动时距,保守型驾驶员的跟车及制动时距则普遍较大,模型聚类结果更加柔性,样本区分度更高。 展开更多
关键词 驾驶风格 K-MEANS 高斯混合模型(GMM) 跟车特性 制动特点
在线阅读 下载PDF
基于高斯混合密度模型的医学图像聚类方法 被引量:6
12
作者 宋余庆 王春红 +1 位作者 陈健美 谢从华 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2009年第3期293-296,共4页
研究了医学图像的聚类问题,提出一种基于高斯混合密度模型的K-EM聚类算法,并将此算法用于人体腹部图像数据,实现肝、肾、脾等主要器官的分类.在算法中,随机选取腹部图像像素数据,用QAIC信息准则确定训练样本的最佳类别数;用K均值聚类算... 研究了医学图像的聚类问题,提出一种基于高斯混合密度模型的K-EM聚类算法,并将此算法用于人体腹部图像数据,实现肝、肾、脾等主要器官的分类.在算法中,随机选取腹部图像像素数据,用QAIC信息准则确定训练样本的最佳类别数;用K均值聚类算法得到混合模型的初始参数;用期望最大(EM)算法多次迭代建立腹部图像数据的混合密度模型;运用贝叶斯准则,将腹部图像所有像素值划分到混合模型中相应的模型分支,得到每个器官像素值划分的正确率与误判率.试验结果表明,新算法分类的平均正确率高于85%、误判率低于10%,优于K均值算法. 展开更多
关键词 医学图像 K均值 高斯混合模型 QAIC信息准则 EM算法 贝叶斯准则
在线阅读 下载PDF
一种基于高斯混合模型的不确定数据流聚类方法 被引量:6
13
作者 曹振丽 孙瑞志 李勐 《计算机研究与发展》 EI CSCD 北大核心 2014年第S2期102-109,共8页
传感器的广泛应用产生了大量的不确定数据流,在聚类应用中,当输入数据为连续型随机变量时,现有基于离散型随机变量的聚类方法无法满足数据流应用在效率和精度上的要求.使用高斯混合模型作为不确定数据的基本表示形式,仅需要保存不同组... 传感器的广泛应用产生了大量的不确定数据流,在聚类应用中,当输入数据为连续型随机变量时,现有基于离散型随机变量的聚类方法无法满足数据流应用在效率和精度上的要求.使用高斯混合模型作为不确定数据的基本表示形式,仅需要保存不同组件的描述信息即可,可以更好地利用存储空间,完成对真实情况的逼近,在此基础上提出了一种可以发现时间维度上的不确定数据流聚类方法cumicro,该算法将时间直接作为数据属性,可直接查询某个时间维度的聚簇,避免了传统基于划分的聚类中较难发现非球状聚簇的问题.通过实验与经典算法umicro进行比较,证明了本文算法的有效性,并分析了不同K值、τ值下的聚类结果.最后得出结论,原始数据较密集时,相较原有基于离散模型的聚类,该算法具有准确度上的优势. 展开更多
关键词 高斯混合模型 不确定数据流 大数据 概要结构
在线阅读 下载PDF
基于快速求解高斯混合模型的流量聚类算法 被引量:10
14
作者 党小超 毛鹏鑫 郝占军 《计算机工程与应用》 CSCD 北大核心 2015年第8期96-101,共6页
基于聚类算法可以对多个属性聚类的特点,提出一种基于快速求解高斯混合模型的聚类算法,用于研究网络流量的分类,使其达到更佳的聚类效果。通过与其他算法比较,讨论了该种方法在流量聚类中的适用性。仿真结果表明,该方法聚类精度高,经过... 基于聚类算法可以对多个属性聚类的特点,提出一种基于快速求解高斯混合模型的聚类算法,用于研究网络流量的分类,使其达到更佳的聚类效果。通过与其他算法比较,讨论了该种方法在流量聚类中的适用性。仿真结果表明,该方法聚类精度高,经过初始聚类中心后的EM算法用于求解GMM有较高的估算准确性,有效地提高了EM算法的收敛速度。 展开更多
关键词 K-MEANS算法 参数初始化 高斯混合模型 流量
在线阅读 下载PDF
基于高斯混合模型的层次聚类算法 被引量:3
15
作者 瞿俊 姜青山 +1 位作者 Wang Shengrui 董槐林 《计算机研究与发展》 EI CSCD 北大核心 2006年第z3期321-327,共7页
选择合适的聚类数和准确划分类间重叠的数据是聚类分析领域2个被广泛研究的问题.提出了一个基于高斯混合模型的层次聚类算法(HCGMM),该算法基于重叠度的衡量,而且不需要预先指定聚类数,能够很好地解决以上两个问题.算法根据高维空间中... 选择合适的聚类数和准确划分类间重叠的数据是聚类分析领域2个被广泛研究的问题.提出了一个基于高斯混合模型的层次聚类算法(HCGMM),该算法基于重叠度的衡量,而且不需要预先指定聚类数,能够很好地解决以上两个问题.算法根据高维空间中混合模型每2个组成成分之间的重叠情况自动运行或停止,从而准确划分类间重叠的数据,并自动确定聚类数.最后,通过标准的数据的测试,以及通过把它应用于不同类型的真实彩色图像分割表明,该算法是有效的,而且对噪声影响不敏感.把它和其他层次算法进行比较和分析,以证明该算法的优越性. 展开更多
关键词 高斯混合模型 图像分割
在线阅读 下载PDF
基于高斯混合模型和自适应簇数的文本聚类 被引量:4
16
作者 程宏兵 王本安 +2 位作者 陈友荣 张旭东 吴前锋 《浙江工业大学学报》 北大核心 2023年第6期602-609,共8页
针对海量文本难以精准聚类问题,提出了一种基于高斯混合模型和自适应簇数的文本聚类算法(TCA)。首先,采用无意义符号去除、基于齐次马尔科夫假设的文本分词和停用词去除方法,实现数据分词和清洗;其次,提出权衡关键词频率和普适性的关键... 针对海量文本难以精准聚类问题,提出了一种基于高斯混合模型和自适应簇数的文本聚类算法(TCA)。首先,采用无意义符号去除、基于齐次马尔科夫假设的文本分词和停用词去除方法,实现数据分词和清洗;其次,提出权衡关键词频率和普适性的关键词权重,选择关键词和进行文本向量化;再次,在高斯混合模型的基础上,引入文本相似度,提出权衡条件概率和相似度的文本权重;最后,通过轮盘赌初始化聚类中心,更新多维高斯分布模型参数,实现分簇数量确定的文本聚类。同时,为了自适应文本分簇数量,在肘部法则的基础上确定最优分簇数量,从而提高聚类效果。仿真结果表明:TCA能自适应文本聚类数量和获得其分布,提高聚类的准确率和召回率,有助于更好地实现海量文本的精确聚类。 展开更多
关键词 文本 高斯混合模型 自适应簇数 相似度 条件概率
在线阅读 下载PDF
基于聚类分析的网络流量高斯混合模型 被引量:2
17
作者 程华 房一泉 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第2期255-260,共6页
基于聚类算法对数据对象多个属性综合聚类的特点,研究网络流量的GMM模型及其在数据流尺度上的Log-normal分布。用EM算法研究了具有交互特征的网络流量的分类;通过与K-means算法比较,讨论了EM算法在流量聚类中的适用性;通过平衡和不平衡... 基于聚类算法对数据对象多个属性综合聚类的特点,研究网络流量的GMM模型及其在数据流尺度上的Log-normal分布。用EM算法研究了具有交互特征的网络流量的分类;通过与K-means算法比较,讨论了EM算法在流量聚类中的适用性;通过平衡和不平衡流量的聚类分析,研究了不同类型流量GMM建模的有效性。研究流量的幂律关系及其在不同尺度间的传递性,用户行为和应用程序特征通过传输层控制协议分解传递到IP层后,在数据包尺度上表现出分形和自相似性,在数据流尺度上表现出Log-normal分布。 展开更多
关键词 高斯混合模型 EM算法 Log-normal分布 幂律关系
在线阅读 下载PDF
融合密度峰值的高斯混合模型聚类算法 被引量:11
18
作者 陶志勇 刘晓芳 王和章 《计算机应用》 CSCD 北大核心 2018年第12期3433-3437,3443,共6页
针对高斯混合模型(GMM)聚类算法对初始值敏感且容易陷入局部极小值的问题,利用密度峰值(DP)算法全局搜索能力强的优势,对GMM算法的初始聚类中心进行优化,提出了一种融合DP的GMM聚类算法(DPGMMC)。首先,基于DP算法寻找聚类中心,得到混合... 针对高斯混合模型(GMM)聚类算法对初始值敏感且容易陷入局部极小值的问题,利用密度峰值(DP)算法全局搜索能力强的优势,对GMM算法的初始聚类中心进行优化,提出了一种融合DP的GMM聚类算法(DPGMMC)。首先,基于DP算法寻找聚类中心,得到混合模型的初始参数;其次,采用最大期望(EM)算法迭代估计混合模型的参数;最后,根据贝叶斯后验概率准则实现数据点的聚类。在Iris数据集下,DP-GMMC聚类准确率可达到96. 67%,与传统GMM算法相比提高了33. 6个百分点,解决了对初始聚类中心依赖的问题。实验结果表明,DP-GMMC对低维数据集有较好的聚类效果。 展开更多
关键词 高斯混合模型 最大期望算法 密度峰值
在线阅读 下载PDF
基于高斯混合模型的期望最大化聚类算法 被引量:9
19
作者 尹楠 《统计与决策》 CSSCI 北大核心 2017年第4期87-89,共3页
文章介绍了基于高斯混合模型的期望最大化聚类算法,并对模型进行了简化,运用案例分析了该模型在经济管理领域中的应用,利用可视化的图形展示了研究样本的概率密度。
关键词 高斯混合模型 概率密度
在线阅读 下载PDF
高斯混合密度降解模型在数据流聚类中的应用 被引量:1
20
作者 朱启家 张伟 陈春燕 《江南大学学报(自然科学版)》 CAS 2007年第6期891-894,共4页
针对数据流具有数据量无限且流速快的特点,将高斯混合密度降解模型应用于数据流聚类问题,在数据流中找出有效的高斯分量,并且合并相等的高斯分量.通过采用真实数据进行实验的结果表明,此方法能够有效解决数据流的聚类问题.
关键词 数据流 高斯混合降解模型
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部